12 research outputs found

    Association of the 6q23 region with the rate of joint destruction in rheumatoid arthritis

    Get PDF
    BACKGROUND: /st> Two novel genetic polymorphisms on chromosome 6q23 are associated with susceptibility to rheumatoid arthritis (RA). Both polymorphisms (rs6920220 and rs10499194) reside in a region close to the gene encoding tumour necrosis factor alpha-induced protein 3 (TNFAIP3). TNFAIP3 is a negative regulator of NF-kappaB and is involved in inhibiting TNF-receptor-mediated signalling effects. Interestingly, the initial associations were detected in patients with longstanding RA. However, no association was found for rs10499194 in a Swedish cohort with early arthritis. This might be caused by over-representation of patients with severe disease in cohorts with longstanding RA. OBJECTIVE: /st> To analyse the effect of the 6q23 region on the rate of joint destruction. METHODS: /st> Five single nucleotide polymorphisms in 6q23 were genotyped in 324 Dutch patients with early RA. Genotypes were correlated with progression of radiographic joint damage for a follow-up time of 5 years. RESULTS: /st> Two polymorphisms (rs675520 and rs9376293) were associated with severity of radiographic joint damage in patients positive for anti-citrullinated protein/peptide antibodies (ACPA). Importantly, the effects were present after correction for confounding factors such as secular trends in treatment. CONCLUSIONS: /st> These data associate the 6q23 region with the rate of joint destruction in ACPA+ RA.Pathophysiology and treatment of rheumatic disease

    Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation

    No full text
    The hallmark autoantibodies in rheumatoid arthritis are characterized by variable domain glycans (VDGs). Their abundant occurrence results from the selective introduction of N-linked glycosylation sites during somatic hypermutation, and their presence is predictive for disease development. However, the functional consequences of VDGs on autoreactive B cells remain elusive. Combining crystallography, glycobiology, and functional B cell assays allowed us to dissect key characteristics of VDGs on human B cell biology. Crystal structures showed that VDGs are positioned in the vicinity of the antigen-binding pocket, and dynamic modeling combined with binding assays elucidated their impact on binding. We found that VDG-expressing B cell receptors stay longer on the B cell surface and that VDGs enhance B cell activation. These results provide a rationale on how the acquisition of VDGs might contribute to the breach of tolerance of autoreactive B cells in a major human autoimmune disease

    Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation

    No full text
    The hallmark autoantibodies in rheumatoid arthritis are characterized by variable domain glycans (VDGs). Their abundant occurrence results from the selective introduction of N-linked glycosylation sites during somatic hypermutation, and their presence is predictive for disease development. However, the functional consequences of VDGs on autoreactive B cells remain elusive. Combining crystallography, glycobiology, and functional B cell assays allowed us to dissect key characteristics of VDGs on human B cell biology. Crystal structures showed that VDGs are positioned in the vicinity of the antigen-binding pocket, and dynamic modeling combined with binding assays elucidated their impact on binding. We found that VDG-expressing B cell receptors stay longer on the B cell surface and that VDGs enhance B cell activation. These results provide a rationale on how the acquisition of VDGs might contribute to the breach of tolerance of autoreactive B cells in a major human autoimmune disease
    corecore