6,300 research outputs found

    Age determination of the HR8799 planetary system using asteroseismology

    Full text link
    Discovery of the first planetary system by direct imaging around HR8799 has made the age determination of the host star a very important task. This determination is the key to derive accurate masses of the planets and to study the dynamical stability of the system. The age of this star has been estimated using different procedures. In this work we show that some of these procedures have problems and large uncertainties, and the real age of this star is still unknown, needing more observational constraints. Therefore, we have developed a comprehensive modeling of HR8799, and taking advantage of its gamma Doradus-type pulsations, we have estimated the age of the star using asteroseismology. The accuracy in the age determination depends on the rotation velocity of the star, and therefore an accurate value of the inclination angle is required to solve the problem. Nevertheless, we find that the age estimate for this star previously published in the literature ([30,160] Myr) is unlikely, and a more accurate value might be closer to the Gyr. This determination has deep implications on the value of the mass of the objects orbiting HR8799. An age around \approx 1 Gyr implies that these objects are brown dwarfs.Comment: 5 pages, 3 figures, accepted in MNRAS Letter

    Spin dependent Momentum Distributions in Deformed Nuclei

    Get PDF
    We study the properties of the spin dependent one body density in momentum space for odd--A polarized deformed nuclei within the mean field approximation. We derive analytic expressions connecting intrinsic and laboratory momentum distributions. The latter are related to observable transition densities in {\bf p}--space that can be probed in one nucleon knock--out reactions from polarized targets. It is shown that most of the information contained in the intrinsic spin dependent momentum distribution is lost when the nucleus is not polarized. Results are presented and discussed for two prolate nuclei, 21^{21}Ne and 25^{25}Mg, and for one oblate nucleus, 37^{37}Ar. The effects of deformation are highlighted by comparison to the case of odd--A nuclei in the spherical model.Comment: Latex 2.09. 25 pages and 6 figures (available from [email protected]), to appear in Ann. of Phy

    Coherent delocalization: Views of entanglement in different scenarios

    Get PDF
    The concept of entanglement was originally introduced to explain correlations existing between two spatially separated systems, that cannot be described using classical ideas. Interestingly, in recent years, it has been shown that similar correlations can be observed when considering different degrees of freedom of a single system, even a classical one. Surprisingly, it has also been suggested that entanglement might be playing a relevant role in certain biological processes, such as the functioning of pigment-proteins that constitute light-harvesting complexes of photosynthetic bacteria. The aim of this work is to show that the presence of entanglement in all of these different scenarios should not be unexpected, once it is realized that the very same mathematical structure can describe all of them. We show this by considering three different, realistic cases in which the only condition for entanglement to exist is that a single excitation is coherently delocalized between the different subsystems that compose the system of interest
    corecore