19,564,586 research outputs found

    Fermionic quasinormal modes for two-dimensional Ho\v{r}ava-Lifshitz black holes

    Full text link
    To obtain fermionic quasinormal modes, the Dirac equation for two types of black holes is investigated. For the first type of black hole, the quasinormal modes have continuous spectrum with negative imaginary part that provides the stability of black hole geometry. For the second type of the black hole, the quasinormal modes have discrete spectrum and are completely imaginary. This type of the black hole appears to be stable for arbitrary masses of fermion field perturbations.Comment: 13 pages, no figure

    Flanged major modular assembly jig

    Get PDF
    Weldless methods and means are described for securing flanges to the projecting ends of an unmachined box beam framework in such a manner that the flanged structure may be reused without modification. And one framework may be readily assembled to another by simply matching the flanges together and passing connecting members between performed holes in the structures

    Wavefunction localization and its semiclassical description in a 3-dimensional system with mixed classical dynamics

    Full text link
    We discuss the localization of wavefunctions along planes containing the shortest periodic orbits in a three-dimensional billiard system with axial symmetry. This model mimicks the self-consistent mean field of a heavy nucleus at deformations that occur characteristically during the fission process [1,2]. Many actinide nuclei become unstable against left-right asymmetric deformations, which results in asymmetric fragment mass distributions. Recently we have shown [3,4] that the onset of this asymmetry can be explained in the semiclassical periodic orbit theory by a few short periodic orbits lying in planes perpendicular to the symmetry axis. Presently we show that these orbits are surrounded by small islands of stability in an otherwise chaotic phase space, and that the wavefunctions of the diabatic quantum states that are most sensitive to the left-right asymmetry have their extrema in the same planes. An EBK quantization of the classical motion near these planes reproduces the exact eigenenergies of the diabatic quantum states surprisingly well.Comment: 4 pages, 5 figures, contribution to the Nobel Symposium on Quantum Chao

    Neutral interstellar He parameters in front of the heliosphere 1994--2007

    Full text link
    Analysis of IBEX measurements of neutral interstellar He flux brought the inflow velocity vector different from the results of earlier analysis of observations from GAS/Ulysses. Recapitulation of results on the helium inflow direction from the past ~40 years suggested that the inflow direction may be changing with time. We reanalyze the old Ulysses data and reprocess them to increase the accuracy of the instrument pointing to investigate if the GAS observations support the hypothesis that the interstellar helium inflow direction is changing. We employ a similar analysis method as in the analysis of the IBEX data. We seek a parameter set that minimizes reduced chi-squared, using the Warsaw Test Particle Model for the interstellar He flux at Ulysses with a state of the art model of neutral He ionization in the heliosphere, and precisely reproducing the observation conditions. We also propose a supplementary method of constraining the parameters based on cross-correlations of parameters obtained from analysis of carefully selected subsets of data. We find that the ecliptic longitude and speed of interstellar He are in a very good agreement with the values reported in the original GAS analysis. We find, however, that the temperature is markedly higher. The 3-seasons optimum parameter set is lambda = 255.3, beta = 6, v = 26.0 km/s, T = 7500 K. We find no evidence that it is varying with time, but the uncertainty range is larger than originally reported. The originally-derived parameters of interstellar He from GAS are in good agreement with presently derived, except for the temperature, which seems to be appreciably higher, in good agreement with interstellar absorption line results. While the results of the present analysis are in marginal agreement with the earlier reported results from IBEX, the most likely values from the two analyses differ for reasons that are still not understood.Comment: submitted for publication in Astronomy & Astrophysic
    corecore