We discuss the localization of wavefunctions along planes containing the
shortest periodic orbits in a three-dimensional billiard system with axial
symmetry. This model mimicks the self-consistent mean field of a heavy nucleus
at deformations that occur characteristically during the fission process [1,2].
Many actinide nuclei become unstable against left-right asymmetric
deformations, which results in asymmetric fragment mass distributions. Recently
we have shown [3,4] that the onset of this asymmetry can be explained in the
semiclassical periodic orbit theory by a few short periodic orbits lying in
planes perpendicular to the symmetry axis. Presently we show that these orbits
are surrounded by small islands of stability in an otherwise chaotic phase
space, and that the wavefunctions of the diabatic quantum states that are most
sensitive to the left-right asymmetry have their extrema in the same planes. An
EBK quantization of the classical motion near these planes reproduces the exact
eigenenergies of the diabatic quantum states surprisingly well.Comment: 4 pages, 5 figures, contribution to the Nobel Symposium on Quantum
Chao