16 research outputs found

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Abstract: Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers

    Plant genetic effects on microbial hubs impact host fitness in repeated field trials

    No full text
    International audienceAlthough complex interactions between hosts and microbial associates are increasingly well documented, we still know little about how and why hosts shape microbial communities in nature. In addition, host genetic effects on microbial communities vary widely depending on the environment, obscuring conclusions about which microbes are impacted and which plant functions are important. We characterized the leaf microbiota of 200 Arabidopsis thaliana genotypes in eight field experiments and detected consistent host effects on specific, broadly distributed microbial species (operational taxonomic unit [OTUs]). Host genetic effects disproportionately influenced central ecological hubs, with heritability of particular OTUs declining with their distance from the nearest hub within the microbial network. These host effects could reflect either OTUs preferentially associating with specific genotypes or differential microbial success within them. Host genetics associated with microbial hubs explained over 10% of the variation in lifetime seed production among host genotypes across sites and years. We successfully cultured one of these microbial hubs and demonstrated its growth-promoting effects on plants in sterile conditions. Finally, genome-wide association mapping identified many putatively causal genes with small effects on the relative abundance of microbial hubs across sites and years, and these genes were enriched for those involved in the synthesis of specialized metabolites, auxins, and the immune system. Using untargeted metabolomics, we corroborate the consistent association between variation in specialized metabolites and microbial hubs across field sites. Together, our results reveal that host genetic variation impacts the microbial communities in consistent ways across environments and that these effects contribute to fitness variation among host genotypes

    COVID-19 in breast cancer patients: A cohort at the Institut Curie hospitals in the Paris area

    No full text
    International audienceBackground: Cancer patients have been reported to be at higher risk of COVID-19 complications and deaths. We report the characteristics and outcome of patients diagnosed with COVID-19 during breast cancer treatment at Institut Curie hospitals (ICH, Paris area, France). Methods: An IRB-approved prospective registry was set up at ICH on March 13, 2020, for all breast cancer patients with COVID-19 symptoms or radiologic signs. Registered data included patient history, tumor characteristics and treatments, COVID-19 symptoms, radiological features, and outcome. Data extraction was done on April 25, 2020. COVID-19 patients were defined as those with either a positive RNA test or typical, newly appeared lung CT scan abnormalities. Results: Among 15,600 patients actively treated for early or metastatic breast cancer during the last 4 months at ICH, 76 patients with suspected COVID-19 infection were included in the registry and followed. Fifty-nine of these patients were diagnosed with COVID-19 based on viral RNA testing (N = 41) or typical radiologic signs: 37/59 (63%) COVID-19 patients were treated for metastatic breast cancer, and 13/59 (22%) of them were taking corticosteroids daily. Common clinical features mostly consisted of fever and/or cough, while ground-glass opacities were the most common radiologic sign at diagnosis. We found no association between prior radiation therapy fields or extent of radiation therapy sequelae and extent of COVID-19 lung lesions. Twenty-eight of these 59 patients (47%) were hospitalized, and 6 (10%) were transferred to an intensive care unit. At the time of analysis, 45/59 (76%) patients were recovering or had been cured, 10/59 (17%) were still followed, and 4/59 (7%) had died from COVID-19. All 4 patients who died had significant non-cancer comorbidities. In univariate analysis, hypertension and age (> 70) were the two factors associated with a higher risk of intensive care unit admission and/or death. Conclusions: This prospective registry analysis suggests that the COVID-19 mortality rate in breast cancer patients depends more on comorbidities than prior radiation therapy or current anti-cancer treatment. Special attention must be paid to comorbidities when estimating the risk of severe COVID-19 in breast cancer patients

    Classification of 101 BRCA1 and BRCA2 variants of uncertain significance by cosegregation study: A powerful approach

    No full text
    International audienc

    Classification of 101 BRCA1 and BRCA2 variants of uncertain significance by cosegregation study: A powerful approach

    No full text
    International audienc

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    No full text

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome Associated with COVID-19: An Emulated Target Trial Analysis

    No full text
    International audienc
    corecore