280 research outputs found

    Parity realization in Vector-like theories from Fermion Bilinears

    Full text link
    We reconsider in this paper the old aim of trying to understand if the observed realization of discrete symmetries as Parity or CP in the QCD vacuum can be satisfied from first principles. We show how under the appropriate assumptions implicitely done by Vafa and Witten in their old paper on parity realization in vector-like theories, all parity and CP odd operators constructed from fermion bilinears of the form ψˉO~ψ\bar\psi\tilde O\psi should take a vanishing vacuum expectation value in a vector-like theory with N degenerate flavours (N>1). In our analysis the Vafa-Witten theorem on the impossibility to break spontaneously the flavour symmetry in a vector-like theory plays a fundamental role.Comment: 12 pages, no figures To be published in JHE

    Quantum magnetism with multicomponent polar molecules in an optical lattice

    Full text link
    We consider bosonic dipolar molecules in an optical lattice prepared in a mixture of different rotational states. The 1/r^3 interaction between molecules for this system is produced by exchanging a quantum of angular momentum between two molecules. We show that the Mott states of such systems have a large variety of non-trivial spin orderings including a state with ordering wave vector that can be changed by tilting the lattice. As the Mott insulating phase is melted, we also describe several exotic superfluid phases that will occur

    Soliton localization in Bose-Einstein condensates with time-dependent harmonic potential and scattering length

    Full text link
    We derive exact solitonic solutions of a class of Gross-Pitaevskii equations with time-dependent harmonic trapping potential and interatomic interaction. We find families of exact single-solitonic, multi-solitonic, and solitary wave solutions. We show that, with the special case of an oscillating trapping potential and interatomic interaction, a soliton can be localized indefinitely at an arbitrary position. The localization is shown to be experimentally possible for sufficiently long time even with only an oscillating trapping potential and a constant interatomic interaction.Comment: 19 pages, 11 figures, accepted for publication in J.Phys.

    The stability of the O(N) invariant fixed point in three dimensions

    Full text link
    We study the stability of the O(N) fixed point in three dimensions under perturbations of the cubic type. We address this problem in the three cases N=2,3,4N=2,3,4 by using finite size scaling techniques and high precision Monte Carlo simulations. It is well know that there is a critical value 2<Nc<42<N_c<4 below which the O(N) fixed point is stable and above which the cubic fixed point becomes the stable one. While we cannot exclude that Nc<3N_c<3, as recently claimed by Kleinert and collaborators, our analysis strongly suggests that NcN_c coincides with 3.Comment: latex file of 18 pages plus three ps figure

    A quasi-elastic regime for vibrated granular gases

    Get PDF
    Using simple scaling arguments and two-dimensional numerical simulations of a granular gas excited by vibrating one of the container boundaries, we study a double limit of small 1r1-r and large LL, where rr is the restitution coefficient and LL the size of the container. We show that if the particle density n0n_0 and (1r2)(n0Ld)(1-r^2)(n_0 Ld) where dd is the particle diameter, are kept constant and small enough, the granular temperature, i.e. the mean value of the kinetic energy per particle, /N/N, tends to a constant whereas the mean dissipated power per particle, /N/N, decreases like 1/N1/\sqrt{N} when NN increases, provided that (1r2)(n0Ld)2<1(1-r^2)(n_0 Ld)^2 < 1. The relative fluctuations of EE, DD and the power injected by the moving boundary, II, have simple properties in that regime. In addition, the granular temperature can be determined from the fluctuations of the power I(t)I(t) injected by the moving boundary.

    On the gravitational field of static and stationary axial symmetric bodies with multi-polar structure

    Get PDF
    We give a physical interpretation to the multi-polar Erez-Rozen-Quevedo solution of the Einstein Equations in terms of bars. We find that each multi-pole correspond to the Newtonian potential of a bar with linear density proportional to a Legendre Polynomial. We use this fact to find an integral representation of the γ\gamma function. These integral representations are used in the context of the inverse scattering method to find solutions associated to one or more rotating bodies each one with their own multi-polar structure.Comment: To be published in Classical and Quantum Gravit

    Dynamics of cosmic strings and springs; a covariant formulation

    Full text link
    A general family of charge-current carrying cosmic string models is investigated. In the special case of circular configurations in arbitrary axially symmetric gravitational and electromagnetic backgrounds the dynamics is determined by simple point particle Hamiltonians. A certain "duality" transformation relates our results to previous ones, obtained by Carter et. al., for an infinitely long open stationary string in an arbitrary stationary background.Comment: 11 pages, Latex, Nordita preprint 93/28

    Low-scale Supersymmetry from Inflation

    Full text link
    We investigate an inflation model with the inflaton being identified with a Higgs boson responsible for the breaking of U(1)B-L symmetry. We show that supersymmetry must remain a good symmetry at scales one order of magnitude below the inflation scale, in order for the inflation model to solve the horizon and flatness problems, as well as to account for the observed density perturbation. The upper bound on the soft supersymmetry breaking mass lies between 1TeV and 10^3TeV. Interestingly, our finding opens up a possibility that universes with the low-scale supersymmetry are realized by the inflationary selection. Our inflation model has rich implications; non-thermal leptogenesis naturally works, and the gravitino and moduli problems as well as the moduli destabilization problem can be solved or ameliorated; the standard-model higgs boson receives a sizable radiative correction if the supersymmertry breaking takes a value on the high side ~10^3TeV.Comment: 23pages, 3 figures. v2: references adde

    CPT and Other Symmetries in String/M Theory

    Get PDF
    We initiate a search for non-perturbative consistency conditions in M theory. Some non-perturbative conditions are already known in Type I theories; we review these and search for others. We focus principally on possible anomalies in discrete symmetries. It is generally believed that discrete symmetries in string theories are gauge symmetries, so anomalies would provide evidence for inconsistencies. Using the orbifold cosmic string construction, we give some evidence that the symmetries we study are gauged. We then search for anomalies in discrete symmetries in a variety of models, both with and without supersymmetry. In symmetric orbifold models we extend previous searches, and show in a variety of examples that all anomalies may be canceled by a Green-Schwarz mechanism. We explore some asymmetric orbifold constructions and again find that all anomalies may be canceled this way. Then we turn to Type IIB orientifold models where it is known that even perturbative anomalies are non-universal. In the examples we study, by combining geometric discrete symmetries with continuous gauge symmetries, one may define non-anomalous discrete symmetries already in perturbation theory; in other cases, the anomalies are universal. Finally, we turn to the question of CPT conservation in string/M theory. It is well known that CPT is conserved in all string perturbation expansions; here in a number of examples for which a non-perturbative formulation is available we provide evidence that it is conserved exactly.Comment: 52 pages.1 paragraph added in introduction to clarify assumption

    Quantum group symmetry of the Quantum Hall effect on the non-flat surfaces

    Full text link
    After showing that the magnetic translation operators are not the symmetries of the QHE on non-flat surfaces , we show that there exist another set of operators which leads to the quantum group symmetries for some of these surfaces . As a first example we show that the su(2)su(2) symmetry of the QHE on sphere leads to suq(2)su_q(2) algebra in the equator . We explain this result by a contraction of su(2)su(2) . Secondly , with the help of the symmetry operators of QHE on the Pioncare upper half plane , we will show that the ground state wave functions form a representation of the suq(2)su_q(2) algebra .Comment: 8 pages,latex,no figur
    corecore