We derive exact solitonic solutions of a class of Gross-Pitaevskii equations
with time-dependent harmonic trapping potential and interatomic interaction. We
find families of exact single-solitonic, multi-solitonic, and solitary wave
solutions. We show that, with the special case of an oscillating trapping
potential and interatomic interaction, a soliton can be localized indefinitely
at an arbitrary position. The localization is shown to be experimentally
possible for sufficiently long time even with only an oscillating trapping
potential and a constant interatomic interaction.Comment: 19 pages, 11 figures, accepted for publication in J.Phys.