185 research outputs found
Butterfly gene flow goes berserk
This is the final version of the article. Available from the publisher via the DOI in this record.A new study shows that genomic introgression between two Heliconius butterfly species is not solely confined to color pattern loci.The authors work on butterfly wing patterning is supported by the BBSR
Does resistance really carry a fitness cost?
This is the final version of the article. Available from Elsevier via the DOI in this record.Insecticide resistance mutations are widely assumed to carry fitness costs. However studies to measure such costs are rarely performed on genetically related strains and are often only done in the laboratory. Theory also suggests that once evolved the cost of resistance can be offset by the evolution of fitness modifiers. But for insecticide resistance only one such example is well documented. Here we critically examine the literature on fitness costs in the absence of pesticide and ask if our knowledge of molecular biology has helped us predict the costs associated with different resistance mechanisms. We find that resistance alleles can arise from pre-existing polymorphisms and resistance associated variation can also be maintained by sexual antagonism. We describe novel mechanisms whereby both resistant and susceptible alleles can be maintained in permanent heterozygosis and discuss the likely consequences for fitness both in the presence and absence of pesticide. Taken together these findings suggest that we cannot assume that resistance always appears de novo and that our assumptions about the associated fitness costs need to be informed by a deeper understanding of the underlying molecular biology.Work on insecticide resistance in the ffrench-Constant and Bass laboratories is supported by the BBSRC (BB/H014268 to R. ff-C), the Royal Society (Wolfson Merit Award to R. ff-C) and the ERC (ERC Consolidator award to CB)
Transposable elements and xenobiotic resistance
This is the final version. Available from Frontiers Media via the DOI in this record. Transposable elements or TEs are well known drivers of adaptive change in plants and animals but their role in insecticide resistance remains poorly documented. This review examines the potential role of transposons in resistance and identifies key areas where our understanding remains unclear. Despite well-known model systems such as upregulation of Drosophila Cyp6g1, many putative examples lack functional validation. The potential types of transposon-associated changes that could lead to resistance are reviewed, including changes in up-regulation, message stability, loss of function and alternative splicing. Where potential mechanisms appear absent from the resistance literature examples are drawn from other areas of biology. Finally, ways are suggested in which transgenic expression could be used to validate the biological significance of TE insertion. In the absence of such functional expression studies many examples of the association of TEs and resistance genes therefore remain as correlations.Biotechnology and Biological Sciences Research Council (BBSRC)European Research CouncilLeverhulme TrustRoyal Societ
Ion channels as insecticide targets.
Published onlineJournal ArticleIon channels remain the primary target of most of the small molecule insecticides. This review examines how the subunit composition of heterologously expressed receptors determines their insecticide-specific pharmacology and how the pharmacology of expressed receptors differs from those found in the insect nervous system. We find that the insecticide-specific pharmacology of some receptors, like that containing subunits of the Rdl encoded GABA receptor, can be reconstituted with very few of the naturally occurring subunits expressed. In contrast, workers have struggled even to express functional insect nicotinic acetylcholine receptors (nAChRs), and work has therefore often relied upon the expression of vertebrate receptor subunits in their place. We also examine the extent to which insecticide-resistance-associated mutations, such as those in the para encoded voltage-gated sodium channel, can reveal details of insecticide-binding sites and mode of action. In particular, we examine whether mutations are present in the insecticide-binding site and/or at sites that allosterically affect the drug preferred conformation of the receptor. We also discuss the ryanodine receptor as a target for the recently developed diamides. Finally, we examine the lethality of the genes encoding these receptor subunits and discuss how this might determine the degree of conservation of the resistance-associated mutations found
Karyotypes versus Genomes: The Nymphalid Butterflies Melitaea cinxia, Danaus plexippus, and D. chrysippus
his is the author accepted manuscript. The final version is available from Karger via the DOI in this recordThe number of sequenced lepidopteran genomes is increasing rapidly. However, the corresponding assemblies rarely represent whole chromosomes and generally also lack the highly repetitive W sex chromosome. Knowledge of the karyotypes can facilitate genome assembly and further our understanding of sex chromosome evolution in Lepidoptera. Here, we describe the karyotypes of the Glanville fritillary Melitaea cinxia (n = 31), the monarch Danaus plexippus (n = 30), and the African queen D. chrysippus (2n = 60 or 59, depending on the source population). We show by FISH that the telomeres are of the (TTAGG) n type, as found in most insects. M. cinxia and D. plexippus have “conventional” W chromosomes which are heterochromatic in meiotic and somatic cells. In D. chrysippus, the W is inconspicuous. Neither telomeres nor W chromosomes are represented in the published genomes of M. cinxia and D. plexippus. Representation analysis in sequenced female and male D. chrysippus genomes detected an evolutionarily old autosome-Z chromosome fusion in Danaus. Conserved synteny of whole chromosomes, so called “macro synteny”, in Lepidoptera permitted us to identify the chromosomes involved in this fusion. An additional and more recent sex chromosome fusion was found in D. chrysippus by karyotype analysis and classical genetics. In a hybrid population between 2 subspecies, D. c. chrysippus and D. c. dorippus, the W chromosome was fused to an autosome that carries a wing colour locus. Thus, cytogenetics and the present state of genome data complement one another to reveal the evolutionary history of the species
Eyespot variation and field temperature in the Meadow Brown butterfly
This is the final version. Available on open access from Wiley via the DOI in this record. Data availability statement:
Data and R codes are available at FigShare 10.6084/m9.figshare.22759490.Since the classic work of E.B. Ford, explanations for eyespot variation in the Meadow
Brown butterfly have focused on the role of genetic polymorphism. The potential role
of thermal plasticity in this classic example of natural selection has therefore been
overlooked. Here, we use large daily field collections of butterflies from three sites,
over multiple years, to examine whether field temperature is correlated with eyespot
variation, using the same presence/absence scoring as Ford. We show that higher
developmental temperature in the field leads to the disappearance of the spots visible while the butterfly is at rest, explaining the historical observation that hindwing
spotting declines across the season. Strikingly, females developing at 11°C have a median of six spots and those developing at 15°C only have three. In contrast, the large
forewing eyespot is always present and scales with forewing length. Furthermore,
in contrast to the smaller spots, the size of the large forewing spot is best explained
by calendar date (days since 1st March) rather than the temperature at pupation. As
this large forewing spot is involved in startling predators and/or sexual selection, its
constant presence is therefore likely required for defence, whereas the disappearance of the smaller spots over the season may help with female crypsis. We model
annual total spot variation with phenological data from the UK and derive predictions
as to how spot patterns will continue to change, predicting that female spotting will
decrease year on year as our climate warms.Biotechnology & Biological Sciences Research Council (BBSRC
Light pollution is associated with earlier tree budburst across the United Kingdom
ArticleThe ecological impact of night-time lighting is of concern because of its well-demonstrated effects on animal behaviour. However, the potential of light pollution to change plant phenology and its corresponding knock-on effects on associated herbivores are less clear. Here, we test if artificial lighting can advance the timing of budburst in trees. We took a UK-wide 13 year dataset of spatially referenced budburst data from four deciduous tree species and matched it with both satellite imagery of night-time lighting and average spring temperature. We find that budburst occurs up to 7.5 days earlier in brighter areas, with the relationship being more pronounced for later-budding species. Excluding large urban areas from the analysis showed an even more pronounced advance of budburst, confirming that the urban ‘heat-island’ effect is not the sole cause of earlier urban budburst. Similarly, the advance in budburst across all sites is too large to be explained by increases in temperature alone. This dramatic advance of budburst illustrates the need for further experimental investigation into the impact of artificial night-time lighting on plant phenology and subsequent species interactions. As light pollution is a growing global phenomenon, the findings of this study are likely to be applicable to a wide range of species interactions across the world.R.S.-Y. was supported by a GWR-ESF Studentship awarded
by the University of Exeter to R.H.f.-C. The study was also founded
by a BBSRC grant to R.H.f-C
Using C. elegans to screen for targets of ethanol and behavior-altering drugs
Caenorhabditis elegans is an attractive model system for determining the targets of neuroactive compounds. Genetic screens in C. elegans provide a relatively unbiased approach to the identification of genes that are essential for behavioral effects of drugs and neuroactive compounds such as alcohol. Much work in vertebrate systems has identified multiple potential targets of ethanol but which, if any, of those candidates are responsible for the behavioral effects of alcohol is uncertain. Here we provide detailed methodology for a genetic screen for mutants of C. elegans that are resistant to the depressive effects of ethanol on locomotion and for the subsequent behavioral analysis of those mutants. The methods we describe should also be applicable for use in screening for mutants that are resistant or hypersensitive to many neuroactive compounds and for identifying the molecular targets or biochemical pathways mediating drug responses
Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato
This is the final version of the article. Available from the publisher via the DOI in this record.Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.Funding: Funding for this study was provided by National Science Foundation grants to WOM (DEB-0715096 and IBN-0344705) and BAC (DEB-0513424). Funding
for work on H. melpomene came from a BBSRC grant to CDJ and RHf-C (011845). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript
Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence.
BACKGROUND\ud
\ud
Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed.\ud
\ud
METHODS\ud
\ud
The efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510) (2 × 10(10) conidia m(-2)) applied on mud panels (simulating walls of traditional Tanzanian houses), black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily.\ud
\ud
RESULTS\ud
\ud
All fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p < 0.001). Mosquitoes exposed to B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14), and a higher risk than those exposed to treated polyester netting (p < 0.001). Residual activity of fungi declined over time; however, conidia remained pathogenic at 28 d post application, and were able to infect and kill 73 - 82% of mosquitoes within 14 d.\ud
\ud
CONCLUSION\ud
\ud
Both fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field
- …