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Abstract

Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural
selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic
variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing
pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage
disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and
red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern,
we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This
observation highlights the extent that recombination can erase the signature of selection in natural populations and is
consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across
both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color
pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern
alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as ‘‘supergenes.’’
Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene,
implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides
convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture
at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of
adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found
in natural populations.
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Introduction

Understanding how adaptive phenotypes arise is vital for

understanding the origins of biodiversity and for predicting how

organisms will respond to novel selective pressures [1]. Nonethe-

less, there are still only a handful of examples where the molecular

elements underlying adaptive variation in nature have been

identified [2–6]. This situation is changing as new technologies

make it possible to leverage nature’s diversity and focus research

directly on taxa that are both ecologically tractable and possess

characteristics (life history switches, behavioral modifications, or

phenotypic differences) with a priori evidence of their adaptive role

[7–10]. The data that will emerge from these studies promise fresh

insights into the genetic architecture and origins of functional

variation and an exciting new understanding of the interplay

between genes, development, and natural selection.

Heliconius butterflies offer exceptional opportunities for genomic

level studies designed to understand how adaptive morphological

diversity is generated in nature [11–13]. The group is renowned as

one of the great insect radiations and provides textbook examples

of adaptation by natural selection, mimicry, and speciation

[14,15]. The vivid wing patterns of Heliconius are adaptations that

warn potential predators of the butterflies’ unpalatability and also

play a key role in speciation [16–18]. Perhaps the greatest strength
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of Heliconius for understanding the origins of functional variation

lies is the wealth of parallel and convergent adaptation in the

group- a pattern best exemplified by the parallel mimetic

radiations of H. erato and H. melpomene [19–23]. The two species

are distantly related and never hybridize [24,25]; yet, they possess

nearly identical wing patterns and have undergone nearly perfectly

congruent radiations into over 25 distinctively different color

pattern races [21]. The convergent and divergent color pattern

changes within and between Heliconius species provide ‘‘natural’’

replicates of the evolutionary process where independent lineages

have produced similar phenotypes due to natural selection.

Indeed, within both the H. erato and H. melpomene radiations, there

are multiple disjunct populations that share identical, yet possibly

independently evolved, wing patterns [26,27] (for an alternative,

shifting balance view, see [22,28]). Moreover, recent comparative

research has demonstrated that the diversity of color patterns

found within H. erato, H. melpomene and in other Heliconius species, is

modulated by a small number of apparently homologous genomic

intervals [29–31], which provides a powerful evolutionary

framework for examining the origins of functional variation and

allows insights into the repeatability of evolution.

The patchwork of differently patterned races in H. erato and H.

melpomene is stitched together by dozens of narrow hybrid zones

[20–22], allowing detailed analysis of the forces that generate and

maintain adaptive variation in this group [32]. Here, and in our

companion paper [33], we exploit concordant hybrid zones to

explore patterns of nucleotide diversity and linkage disequilibrium

(LD) across two of the three interacting genomic regions that

control most of the adaptive differences in wing color patterns.

The transition between the ‘‘postman’’, H. e. favorinus and H. m.

amaryllis, and ‘‘rayed’’, H. e. emma and H. m. agalope, races of the two

co-mimics in eastern Peru is one of the best described hybrid zones

in Heliconius and occurs over a distance of slightly more than 10 km

(Figure 1 and [33]). Strong natural selection maintains this sharp

phenotypic boundary in both species and per locus selective

coefficients on color pattern loci are estimated to be greater than

0.2 both using field release experiments and by fitting the observed

cline in allelic frequencies at each of the color pattern loci to a

theoretical cline maintained by frequency dependent selection

[34,35]. Despite strong natural selection, there are no strong pre-

or post-mating barriers to hybridization between races of either H.

erato or H. melpomene and in the center of the hybrid zone there is

frequent admixture between divergent color pattern races.

Our study focuses on two H. erato patterning loci, D and Cr.

These two loci map to different linkage groups and interact to

control major differences in the wing color patterns of H. erato

races. The chromosomal regions tightly linked with the D and Cr

loci in H. erato were recently identified [36–38] and map to

homologous regions of the genome that control similar color

pattern changes in H. erato’s co-mimic, H. melpomene [29,31].

Variation in D in H. erato and D/B in H. melpomene cause analogous

changes in the distribution of red pigments on the fore- and

hindwings (see[30,31,39]). Similarly, Cr (H. erato) and the Yb-

complex (H. melpomene) cause similar shifts in the distribution of

melanic scales revealing underlying white and yellow pattern

elements (see [29]). This region also contains the H. numata P locus,

a close relative of H. melpomene. However, the P locus causes

dramatically different pattern changes among sympatric races of

H. numata highlighting the extraordinary ‘jack-of-all-trades’

flexibility of these genomic regions [29].

Wing pattern variation across Heliconius hybrid zones serves as a

‘‘natural’’ laboratory for genome level research into processes that

generate and maintain adaptive variation. One of the most

extensively studied Heliconius hybrid zones is found in Eastern

Peru, where Mallet and coworkers estimated the strength of

natural selection on the three unlinked color pattern loci that

Figure 1. Sampling sites across the transition between H. e.
favorinus and H. e. emma. Geographic representation of the five
locations where H. erato was sampled across the Eastern Peruvian
hybrid zone. Dotted line is approximate location of the Tarapoto-
Yurimaguas road that transects the hybrid zone and was used for
sampling. The D locus affects the presence of the proximal red patch
(‘‘dennis’’), red hindwing rays and the forewing band color. The Cr locus
is responsible for the presence of the hindwing yellow bar and interacts
with the Sd locus to affect the shape of the forewing band and
hindwing bar.
doi:10.1371/journal.pgen.1000796.g001

Author Summary

Identifying the genetic changes responsible for beneficial
variation is essential for understanding how organisms
adapt. Here, we use a combination of mapping, population
genetic analysis, and gene expression studies to identify
the genomic regions responsible for phenotypic evolution
in the Neotropical butterfly Heliconius erato. H. erato,
together with its co-mimic H. melpomene, have undergone
parallel and concordant radiations in their warningly
colored wing patterns across Central and South America.
The ‘‘genes’’ underlying the H. erato color pattern radiation
are classic examples of Mendelian loci of large effect and
are under strong natural selection. Nonetheless, we do not
see a clear molecular signal of recent natural selection,
suggesting that the H. erato color pattern radiation, or the
alleles that underlie it, may be quite old. Moreover, rather
than being single locus, the genetic patterns suggest that
multiple, widely dispersed loci may underlie pattern
variation in H. erato. One of these loci, a kinesin gene,
shows parallel expression differences between races
during wing pattern formation in both H. erato and H.
melpomene, suggesting that it plays an important role in
pattern variation. High rates of recombination within
naturally occurring H. erato hybrid zones mean that finer
genetic dissection will allow us to localize causative sites
and better understand the history and molecular basis of
this extraordinary adaptive radiation.

Population Genetics of Color Patterns in H. erato
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control phenotypic differences between ‘‘rayed’’ and ‘‘postman’’

races of H. erato [34,35,40]. We have taken the next step and used

this same Peruvian H. erato hybrid zone to make four major

advancements: (1) we have identified and sequenced narrow

genomic intervals containing two of the three interacting loci that

cause major adaptive shifts in wing patterns; (2) we have

documented a rapid decay of LD in natural populations across a

sharp phenotypic transition both within genes and across these

intervals; (3) we have identified several genes strongly associated

with the transition in warningly-colored wing patterns; and (4) we

have examined expression levels in these and adjacent genes

during wing development. These data, in combination with data

presented in the companion paper [33], refine our understanding

of the molecular nature of color pattern loci and suggest that

multiple functional sites underlie adaptive morphological variation

in Heliconius.

Results

Fine mapping and sequencing of color pattern intervals
in H. erato

Building on earlier work, including the initial BAC tile path of

H. melpomene D/B locus [31], we sequenced 10 H. erato BACs

representing over 1 Mb of genomic sequence around the D locus

(Figure 2). Across the D BAC tile path, we surveyed over 1200

individuals from our H. erato x H. himera F2 and backcross mapping

families at several molecular markers, and identified an approx-

imately 380 kb interval between the markers Gn12 and THAP that

had no recombination events between color pattern phenotype

and genotype (shaded region on Figure 2). The lack of

recombinants across this zero recombinant window stood in

marked contrast to the pattern observed at both the 59- and 39-end

of our tile path. At both ends of the region, the number of

individuals showing a recombinant event between a genetic

marker and color pattern phenotype was similar to the expected

276 kb/cM based on previous mapping work [39], but then

dropped off rapidly in the centre of the region. The drop off was

particularly marked on the 59end of the interval, where the

number of recombinant events fell from 35 individuals at GN47 to

0 individuals at Dna-J over a span of approximately 200 kb.

We also identified the genomic interval containing the Cr locus,

although in this case, we do not yet have a BAC tile path across the

entire interval. The 59-end of Cr interval is marked by the locus

GerTra, where we identified a single recombinant among nearly

500 H. erato cyrbia x H. himera F2 and backcross individuals. At the

39-end, we observed 3 Cr recombinants at HEAT, which is about

600 kb from GerTra based on comparisons to the Bombyx mori

genome (Figure 2). We sequenced three new BAC clones yielding

approximately 420kb of sequence at the 59-end of the Cr interval.

Across our physical sequence of the Cr interval, we found no

recombinant individuals at markers 39 of GerTra (B9, recQ, Invertase,

LRR, and GN 71) a span of approximately 340 kb (Figure 2). Thus,

as with the D locus interval, there were fewer recombination events

than expected based on previous estimates of the relationship

between physical and recombination distance.

Genetic diversity and LD across color pattern intervals
We estimated genetic diversity from 76 individuals collected

from five locations along a 30 km transect, representing three

distinct populations, phenotypically pure H. e. favorinus (n = 20),

admixed individuals (n = 42), and largely pure H. e. emma (n = 14)

(Figure 1). In total, we assayed variation across 12,660 bp from 25

coding regions including 13 regions from the D interval, 10 from

the Cr interval, and 3 unlinked to each other or any color pattern

Figure 2. BAC tile paths and fine mapping across the D and Cr color pattern intervals. Individual BAC clones tiling across the color pattern
intervals are represented by horizontal shaded bars, with clone name provided directly below. Black horizontal bar above BAC tile path represents
consensus sequence assembled from overlapping BACs. Slashes indicate gaps in the consensus sequence across the interval. There were two small
gaps (<10kb between H. erato clone 33L14 and 18A1 and <5kb between 38G06 and 47M12) and one large gap (<250 kb) in our assembly based on
comparisons to Bombyx mori and H. melpomene. For the Cr interval, the grey horizontal bar extending to the right of the black horizontal bar
represents a region with no available information on recombination. Vertical white markers denote approximate positions of genetic markers used
for brood mapping, with marker names stated directly above. Below each marker is the number of individuals showing a recombination event
between the genetic marker and color pattern phenotype over the total number of individuals genotyped. For the D locus, four phenotypically
distinct races of H. erato were used for fine mapping in crosses with H. himera [39,100],and the results for each race are provided separately. Genetic
markers designated NA were either not polymorphic or could not be reliably scored in the corresponding crosses. Shaded areas denote approximate
locations of ‘zero recombinant intervals’.
doi:10.1371/journal.pgen.1000796.g002

Population Genetics of Color Patterns in H. erato
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locus in H. erato (Table S1). There were 1542 polymorphic sites

among the sampled individuals. Most of these (1110) positions had

minor allele frequencies of less than 5 percent. Of the remaining

432 polymorphic sites, ten had more than two variant bases.

The mean nucleotide diversity (p, average number of pair-wise

differences between sequences) among all sampled gene regions in

H. erato was 0.02260.017. In general, there were no strong

differences in nucleotide diversity among loci tightly linked to color

pattern genes relative to loci unlinked to color pattern (Table 1).

Nucleotide diversity was also very similar among the three

sampled H. erato populations, except for a few gene regions at

the Cr locus in the admixed population that showed slightly

elevated estimates of nucleotide diversity (Table 1). Over half the

coding regions sampled in this study had patterns of nucleotide

diversity not consistent with simulations of neutral evolution, in at

least one of the three populations sampled. Near the D locus, many

coding regions had negative Tajima’s D values that were

significantly different from neutral expectation (Table 1). Howev-

er, there seemed to be little pattern to these departures from

neutrality. For example, the coding regions at the D locus most

strongly associated with color pattern variation (see below) all

showed patterns consistent with the neutral model. In contrast, at

the Cr locus, the two coding regions with associated SNPs

accounted for about half of the significant deviations from

neutrality in genes across this region (Table S1). We also observed

significant deviations from neutrality at loci unlinked to color

pattern variation. In particular, the Heliconius wingless homologue

deviated in all three populations examined (Table S1). Overall

nucleotide diversity was generally greater in the H. erato (mean

p = 0.02260.017) than in H. melpomene (mean p = 0.01260.019,

[33]) but the differences were much less than previously reported

for nuclear introns [27]. Moreover, in H .melpomene, as in H. erato,

there were no striking differences in diversity between loci within

and outside of color pattern intervals, nor consistent departures

from neutrality within color pattern intervals.

Linkage disequilibrium among SNPs decayed precipitously with

physical distance across both the D and Cr intervals (Figure 3 and

Figure S2). This observation was true for phenotypically pure

populations collected at either side of the sharp phenotypic

transition (Figure S1), for ‘‘admixed’’ populations in the center of

the transition zone (Figure S1), and even for the population as a

whole (Figure 3). The only sites with high estimates of r2 (.0.5)

were found within the same coding regions. All other estimates of

r2 were near zero (Figure 3), including values between D and Cr

interval SNPs (Figure 3). The lack of strong LD in populations

across this phenotypic boundary was perhaps best exemplified by

the LD patterns within loci - for all loci, including those that fell

within our zero recombinant windows, short-range LD decayed to

r2 values near zero within 300–500 bp. Although broadly similar,

the pattern of LD differed from what was observed in H. melpomene

(see [33] Figure S2), where LD generally extended farther and

there was some evidence for significant haplotype structure and

long-distance LD among sites.

Genotype-by-phenotype associations
D locus associations. Within the backdrop of the rapid

decay of LD, we identified strong genotype-by-phenotype

associations at a number of positions across both the D and Cr

intervals. Although there were no fixed differences between races,

we identified strong associations between SNP variants and the D

phenotype in three coding regions, we termed Dna-J, GPCR, and

VanGogh (Figure 4). The three coding regions fell within a ,380 kb

interval that correlated perfectly with the zero recombinant

window identified in our linkage analysis (see Figure 2). Each of

the regions had between 2–5 significantly associated sites as well as

SNPs that showed no association interspersed across the coding

Table 1. Estimates of genetic diversity across the H. erato hybrid zone.

D locus Cyta Dna-J 3P Slu7 Kinesin GPCR Abh VanGogh Gn6 THAP Gn18 Has1

Position along interval 91,726 165,009 237,736 283,611 299,335 309,248 322,422 513,028 517,433 552,580 579,264 1,442,402

p favorinus 0.0034 0.0127 0.0916 0.0084 0.0073 0.0082 0.0078 0.0075 0.0036 0.0063 0.0224 0.0046

admix 0.0031 0.0178 0.0792 0.01 0.0132 0.0165 0.0207 0.0129 0.025 0.0115 0.0305 0.01

emma 0.0037 0.0158 0.0598 0.011 0.0101 0.0257 0.0295 0.0141 0.0245 0.011 0.0478 0.0142

Tajima’s D favorinus 2.839* 20.98 22.202* 21.628 20.359 21.241 20.707 21.309 21.954* 20.674 21.448 21.017

admix 2.709* 21.396 22.056* 21.721 22.052 20.929 20.558 20.609 21.791* 21.682 21.599 21.850*

emma 2.237* 21.705* 22.493** 21.901 21.776 21.439 20.26 20.127 21.699 21.792* 22.560* 22.483*

Cr locus Forkhead B9 Treh(A) Treh(B) BESS WD40 Unkempt recQ Invertase LRR

Position along interval 1 54,672 66,809 67,583 104,621 130,877 177,423 190,761 201,977 249,391

p favorinus 0.0222 0.0252 0.0091 0.0282 0.0241 0.0256 0.03825* 0.0078 0.019 0.0153

admix 0.0242 0.0307 0.0121 0.0508 0.0357 0.0276 0.0803 0.0283 0.037 0.0258

emma 0.0402 0.0193 0.0082 0.0246 0.0414 0.0295 0.15611* 0.0069 0.0216 0.0211

Tajima’s D favorinus 21.535 21.436 20.671 22.136* 20.833 20.162 22.518** 21.983* 20.563 21.675*

admix 21.546 21.568 21.088 22.447* 21.314 21.102 21.874* 22.209* 21.701 20.868

emma 22.103* 21.061 20.136 21.691 21.378 20.926 23.132** 21.842* 20.802 20.862

Unlinked loci Caspase SUZ12 Wingless

p favorinus 0.0148 0.0126 0.0228

admix 0.0142 0.0173 0.0382

emma 0.0136 0.0163 0.0194

doi:10.1371/journal.pgen.1000796.t001
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regions (see Table S2 for complete list of the genotype-by-

phenotype associations). The associations at each of these three

coding regions was primarily driven by nucleotides that were

nearly fixed in individuals homozygous for the H. e. emma D

phenotype. The strongest associations were among SNPs at Dna-J,

including three synonymous substitutions and two non-

synonymous substitutions that resulted in an isoleucine/valine

polymorphism at positions 73,699 and 73,753. In both cases,

valine was strongly associated with H. e. emma D color pattern. At

GPCR there were two synonymous substitutions strongly associated

with D phenotype. At VanGogh there was one synonymous

substitution and one non-synonymous substitution strongly

associated with the D phenotype.

In general, estimated levels of differentiation among populations

were very similar to the association results- loci that had strongly

associated sites also had high FST values. These patterns of

genotype-by-phenotype association and population differentiation

stand in marked contrast to observations at unlinked loci and loci

that fell outside the zero recombinant window. The average FST

between the pure H. e. favorinus and pure H. e. emma populations

was over 2-fold greater for the coding regions strongly associated

with the D phenotype (0.34), relative to the other coding regions

within the D zero recombinant window that did not show

significant associations (0.16, see Figure 2 and Table S2). Outside

the zero recombinant window, levels of population differentiation

were lower than inside, but remained higher than levels observed

in unlinked loci (Figure 4 and Table S2).

Cr locus associations. The strength of associations and

estimates of population differentiation were lower across the Cr

interval relative to the D interval. Only two of the 9 genes sampled

contained SNPs significantly associated with the Cr phenotype: one

gene being a coding region with high sequence similarity to the

Drosophila transcription factor Unkempt and the other gene being a

coding region with a leucine-rich (LRR) protein motif. These two

regions were separated by approximately 80 kb and, similar to the

pattern in the D interval, were separated from each other by loci

Figure 3. Lack of LD between SNPs across the D and Cr intervals in the Peruvian hybrid zone. Correlation matrix of composite LD
estimates among SNPs from the 22 coding regions sampled across the D and Cr intervals using all 76 individuals. SNPs are concatenated by their
position along the D and Cr intervals. The upper left matrix shows LD between the 401 SNPs sampled across the D and Cr intervals. The lower right
matrix only shows SNPs from the D and Cr intervals that are strongly associated with wing color pattern.
doi:10.1371/journal.pgen.1000796.g003
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that contained no SNPs associated with color pattern (Figure 4).

Also similar to the D locus, associated sites in the same gene were

often interspersed by SNPs that showed no association. Three out

of the four strongly associated SNPs across the Cr pattern intervals

were non-synonymous substitutions. Across the Cr interval the

average FST among sampled coding regions between the two

phenotypically pure populations was 0.035, or approximately 8

times lower than the average FST across the D interval (Table 2).

Even the two loci that contained sites significantly associated with

color pattern phenotype showed only a moderate degree of

population differentiation (average FST = 0.145 for LRR and

average FST = 0.021 for Unkempt) between the phenotypically

pure populations sampled in this study (Figure 4, Table S2).

LD between associated SNPs. In general, associated SNPs

within each color pattern interval were in higher LD than

unassociated sites, but they showed a similar rapid decay with

distance (see Figure 3 and Figure S2). Thus, while LD between

associated SNPs in the same coding regions could be strong, LD

between associated SNPs from different coding regions was

considerably lower (Figure 3). There was no LD among

associated sites between color pattern intervals. Finer

examination revealed a complex haplotype structure, where

different sets of individuals had genotypes associated with a color

pattern phenotype at each of the associated SNPs, resulting from

several recombination events between the different associated sites.

As a result, there was no obvious haplotype structure that could

explain color pattern phenotype.

Expression analysis of candidate genes
None of the SNPs in this study had a fixed association with color

pattern, suggesting that, while the site is strongly associated with

color pattern, they are not the functional variants themselves.

However, the obvious implication is that they are near the

functional site, which could be in cis-regulatory regions that act by

causing differences in gene expression. To test this possibility, we

compared overall transcription levels between the two races during

the early stages of wing development (5th larval instar and 1, 3, and

5 days after pupation), on genes at the D locus that had SNPs

strongly associated with wing pattern phenotype either in H. erato

or H. melpomene [33]. All genes, with the exception of Slu7, showed

significant differences in expression across wing developmental

stages (ANOVA: p,0.0001 to 0.0066; Bayesian Model Averaging:

Pr(b ? 0) = 100 for each gene) (Figure 5). Kinesin, however, was the

only candidate gene to show significant differences in expression

between H. e. emma and H. e. favorinus (overall race effect

p = 0.0001). Expression of this gene was roughly 86 higher in

H. e. emma in 5th instar larvae (p = 0.0028, t-test) and three days

after pupation (p = 0.0014, t-test), than in H. e. favorinus. As with

the ANOVA, statistical testing using Bayesian Model Averaging

assigned strong probabilities to racial differences only with Kinesin

(Pr(b?0) .92.5), although a small race effect is predicted for

GPCR (Pr(b?0) .54.7; higher in H. e. favorinus).

Discussion

The genomic regions that underlie pattern variation in Heliconius

are ‘‘hotspots’’ of phenotypic evolution [13]. They underlie

adaptive variation among races and species with both convergent

and highly divergent wing patterns [29–31] and play an important

role in speciation [16–18]. This study, together with the

companion study [33], provides the first descriptions of the

patterns of nucleotide diversity, LD, and gene expression across

these evolutionary important genomic intervals. Our data

highlight a complex history of recombination and gene flow

across a sharp phenotypic boundary in H. erato that both reshapes

our ideas about molecular basis of phenotypic change and focuses

future research on a small set of candidate genes that are likely

Figure 4. Several sites in multiple coding regions are associated with the transition in D and Cr color patterns. Plot of genotype-
phenotype associations (black circles) and population differentiation (red squares) across the D, Cr and unlinked intervals. The left axis is the strength
of associations (log10 of the probability of a genotype-by-phenotype association) between genotypes and color patterns. The right axis measures
degree of population differentiation, measured as FST, between H. e. favorinus and H. e. emma. Distance across the genomic intervals is in kilobases.
Points above the horizontal show a significant genotype-by-phenotype association using a bonferroni correction to adjust for multiple tests (a = 0.05,
n = 432).
doi:10.1371/journal.pgen.1000796.g004

Table 2. High genetic differentiation near color pattern loci.

D linked loci
Mean FST

Cr linked loci
Mean FST

Unlinked loci
Mean FST

H. e. favorinus
vs. H .e. emma

0.21660.111
(n = 12)

0.0360.045
(n = 10)

0.00760.015
(n = 3)

doi:10.1371/journal.pgen.1000796.t002
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responsible for phenotypic variation in this extraordinary adaptive

radiation.

No molecular signature of recent, strong selection on
color patterns

The genetic patterns that we observed are inconsistent with the

evolution of novel wing patterns in H. erato via a very recent strong

selective sweep on a new mutation or recent genetic bottleneck as

have been proposed [41]. A selective sweep on a new adaptive

variant, which quickly fixes beneficial alleles, is expected to

generate a temporary genomic signature marked by a reduction of

nucleotide variation and an increase in LD around selected sites as

a result of genetic hitchhiking [42]. Empirically, these patterns

have been observed around loci important in domestication (e.g.

rice [43] and dogs [44,45]), plant cultivation (sunflowers [46] and

maize [47]), drug resistance (Plasmodium, [48]), and the coloniza-

tion of new environments in the last 10,000 years (sticklebacks,

[49–51]). In all cases, selection has been strong, directional, and

very recent.

The genetic patterns across regions responsible for phenotypic

variation in H. erato and H. melpomene serves as a cautionary note

and may be more typical of the functional variation found in

nature. In H. erato, per locus selection coefficients are high [34,35];

yet, we see neither a strong reduction in genetic diversity nor

extended LD across color pattern intervals. There are loci with

nucleotide diversity patterns that deviate significantly from the

neutral expectations, but not in a manner consistent with a recent,

strong selective sweep acting on a new mutation. In all three loci in

the D interval with the strongest association with color pattern, the

patterns of nucleotide variation were largely consistent with

neutrality (Table 1). Thus, recombination has essentially reduced

the signature of selection to very narrow regions tightly linked to

the sites controlling the adaptive color pattern variation. This

pattern is consistent with the hypothesis that pattern diversification

in H. erato is quite ancient, dating perhaps into the Pliocene (see

[27]). Interestingly, we see a very similar pattern in H. melpomene,

which likely radiated much more recently [27]. Alternatively, the

patterns in both H. erato and H. melpomene could also be the result of

a recent ‘‘soft sweep’’, where selection acts on pre-existing

variation [52,53]. Thus, the allelic variants modulating particular

color pattern elements are themselves old but the combination of

patterning loci that characterize specific wing pattern phenotypes

might have evolved much more recently [54,55]. Under either

scenario, however, the observed patterns in both H. erato and H.

melpomene highlight the extent with which recombination can erase

the signature of strong selection in natural populations [56].

The rapid decay of LD across both H. erato color pattern

intervals marks a history of considerable recombination. Narrow

hybrid zones between differently adapted populations are common

in nature [32]. Hybrid individuals are frequently less fit than

parental genotypes and these zones are typically envisioned as

‘‘population sinks’’ that are maintained by the movements of

individuals from outside [32,57,58]. As a result, hybrid zones tend

to show LD even among unlinked loci [59–62]. Instead of a

population sink, the narrow transition zone between H. e. favorinus

and H. e. emma can be more appropriately viewed as a population

sieve- where population sizes have remained large, where

recombination breaks down associations among alleles even at

tightly linked loci, and gene flow allows most of the genome to be

freely exchanged between the divergent races. Mallet observed

similarly low population differentiation across this cline at 14

unlinked allozyme loci (average FST = 0.038, unpublished data).

Figure 5. Quantitative PCR of D-interval candidate genes implicates kinesin. Quantitative PCR data for five candidate genes in the D-
interval. Y-axis values are Log2 transformed values of the initial concentration of the gene divided by the EF-1a initial concentration; developmental
stage is displayed on the X axis, including 5th instar larvae and pupal developmental days 1, 3, and 5. Bars represent standard error among the
biological replicates.
doi:10.1371/journal.pgen.1000796.g005
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Indeed, there is very little evidence for extended LD around loci

that are responsible for adaptive differences in wing pattern and

only slight genetic divergence between H. e. emma and H. e. favorinus

at most of 25 coding regions examined within the two color

pattern intervals (Figure 4). The only exceptions are regions tightly

linked to the sites controlling the color variation, and, even here,

LD decays rapidly with physical distance and estimates of FST

become moderate, albeit higher than at unlinked loci (see Table 2

and Table S2). The decay in LD in H. erato occurs faster than in H.

melpomene, where there is evidence for strong LD (r2..0.5)

extending hundreds of kilobases across the B and Yb color pattern

intervals [33]. Nonetheless, in both co-mimics, LD decays much

more rapidly than has been reported near adaptive loci in

sympatric host races of the pea aphid, Acrythosiphon pisum [63] and

sympatric populations of lake whitefish, Coregonus sp. [64]. In the

pea aphid study in particular, Via & West [63] showed that strong

LD and strong genetic differentiation around the genomic

intervals that underlie variation in ecologically important traits

extends tens of centimorgans, presumably representing several

Mbp at least. This is probably due to lower rates of cross-mating

and geneflow, coupled with the largely non-recombinogenic

reproduction in the pea aphid throughout most of the year. Our

results are more similar to those found between M and S forms of

Anopheles gambiae, where a few tens of genes around the

centromeres and telomeres are the only regions with strong

divergence [65]. Although in this case, the evolutionary or

ecological forces driving these differences are largely unknown.

The power of association mapping—localizing candidate
regions underlying phenotypic variation

The observation that LD in H. erato populations around

ecologically important traits decays at a rate more similar to

Drosophila than pea aphids or mammals [63,66–68] has important

practical ramifications. Foremost, it means that naturally occur-

ring Heliconius hybrid zones can be used to localize genomic

regions responsible for adaptive differences in wing coloration at

an extremely fine scale. On average there are informative

polymorphic sites (with a minor allele frequency greater than

5%) every 30 bp within coding regions in our data on H. erato.

Given this, along with the observed pattern of LD, surveying

polymorphism every 200–500 bp should be sufficient to capture

haplotype structure across the Peruvian hybrid zone and to finely

localize genomic regions responsible for pattern variation in H.

erato.

Even with our current coarse sampling, we were able to greatly

narrow the candidate D and Cr intervals and focus research on a

small set of candidate genes. Across the D interval, there are strong

genotype-by-phenotype associations and high levels of genetic

differentiation between phenotypically pure populations in three

dispersed coding regions: Dna-J, GPCR, and VanGogh. Although

several genes near these association peaks have strong sequence

similarity to Drosophila genes with known molecular or biological

functions that make them candidates for color pattern genes, only

one, kinesin, showed strong expression differences between H. e.

emma and H. e. favorinus (Figure 5) during early wing development.

Kinesin proteins are known to play a role in pattern specification

at a cellular level in Drosophila [69] and are involved in vertebrate

[70] and invertebrate pigmentation [71]. We expect patterning

loci to act as ‘‘switches’’ between different morphological

trajectories and for the genes involved to show distinctive

spatial/temporal shifts in expression patterns similar to what we

observed in kinesin. Although future expression and functional

validation is needed, we observed similar expression shifts in the H.

melpomene kinesin [33], which further implicates this gene as playing

a causal role in pattern variation in Heliconius and provides

convincing evidence that parallel changes in gene regulation

underlies the independent origins of these co-mimetic lineages.

Across the Cr interval, the two coding regions with the strongest

associations, consist of a gene with strong homology to the

Drosophila gene Unkempt, and another predicted gene with a

leucine-rich repeat (LRR). These loci are approximately 80 kb

apart. The H. erato Unkempt codes for the type of protein potentially

involved in pattern generation. It contains a zinc-finger binding

motif and is potentially a signaling molecule that can regulate the

downstream expression of other genes. Indeed, the Drosophila

Unkempt is involved in a number of developmental processes

including wing and bristle morphogenesis [72]. The role of

Unkempt in bristle morphogenesis is particularly intriguing, as the

overlapping scales that color a butterfly wing are thought to have

evolved from wing bristles [73]. Moreover, the different color

scales in Heliconius have unique morphologies and are pigmented

at different times during wing development [74], suggesting that

pattern variation may be tied directly to scale maturation. If

Unkempt is shown by additional research to be modulating pattern

variation, it could provide yet another example of a conserved

developmental gene co-opted to produce novel variation [75–77].

Alternatively, it may turn out that the gene that underlies pattern

variation in Heliconius is either Lepidoptera-specific or has diverged

significantly in both form and function from other insect lineages.

LRR has no strong ortholog in Drosophila, the honeybee (Apis

mellifera), or the flour beetle (Tribolium castaneum). It is most similar

to the Drosophila gene, Sur-8, which is inferred to have RAS

GTPase binding activity. This suggests it may be involved in signal

transduction. This gene also showed the highest differentiation

among H. melpomene races and between H. melpomene and H. cydno

[33], further implicating this gene and the surrounding regions.

Three unlinked genomic intervals, D, Cr and Sd, interact to

generate the phenotypic differences between H. e. favorinus and H.

e. emma [40]. Yet, the overall effect on phenotype of variation

across each of these loci is not identical and the much lower levels

of population differentiation in the Cr interval relative to the D

interval is likely due a combination of differences in dominance

and selection on the two loci. In H. erato, there is a strong

dominance hierarchy among the colored scale cells, where red

scale cells (containing xanthommatin and dihydro-xanthommatin)

are dominant to black (containing melanin) scale cells and both are

dominant to yellow (containing 3-hydroxy-L-kynurenine) scale

cells. For H. e. emma and H. e. favorinus this means that the D locus is

effectively codominant, whereas the Cr allele for the emma lack of

hindwing bar is dominant to presence of yellow hindwing bar in

favorinus [40]. Additionally, the analysis of cline width, together

with the overall percentage of wing surface affected suggests that

the selection on the codominant D locus is much higher (s<0.33)

than selection on the dominant Cr locus (s<0.15) [23,34]. Thus,

the power of natural selection to remove poorly adapted alleles at

Cr is reduced, especially on the H. e. emma side of the zone where

the recessive yellow bar alleles are rare [34]. In H. melpomene the Yb

and B locus are homologous to the H. erato Cr and D loci,

respectively, and are under similar selective constraints at this

Peruvian hybrid zone. Similarly, a reduction in the power of

natural selection on the Cr would likely result in a similar reduction

of selection on Yb, which may explain why genetic differentiation

between the H. melpomene Peruvian races is, like H. erato, much

lower at genes near the Yb relative to the B locus (see [33], Table 1).

Given the history of recombination implied by our data, we expect

only sites extraordinarily tightly linked to the causative polymor-

phisms to yield strong associations. Collectively the association

results across the D and Cr intervals highlight the power of using
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these naturally occurring hybrid zones to select candidate loci for

future focused studies. Similar and possibly independently derived

transitions between ‘‘postman’’ and ‘‘rayed’’ races of H. erato and

H. melpomene that occur in Bolivia, Ecuador, Colombia, Suriname,

and French Guiana, provide additional replicates to test the

repeatability of evolution [19–21,78,79].

The locus of evolution
The color pattern genes of Heliconius are classical examples of

large effect loci where allelic variation causes major phenotypic

shifts in the distribution of melanin and ommochrome pigments

across large sections of both the fore- and hindwing. We are

accustomed to thinking of the generation of phenotypic variation

in terms of single causal mutations. This paradigm has shaped our

ideas about how variation is produced by DNA sequences, and,

although consistent with some of the handful of examples [2,5,80],

there are reasons to imagine this is not the whole story, or even a

dominant trend [75,77,81,82].

In this light, the varying pattern of LD across the D and Cr

intervals and the observation that different polymorphic sites are

associated with pattern phenotype in different sets of individuals

seems inconsistent with a single causal functional site. Our coarse

sampling provides only a preliminary snapshot of haplotype

structure across these intervals and genetic hitching, drift and

ancestry can create complex genotype-by-phenotype signatures

[83–86]. Nonetheless, given the rapid breakdown of LD observed,

we would expect to see a much narrower window of association if

variation was explained by a single causal site. However, the

pattern we observe is expected if there are multiple functional sites

dispersed across these intervals. Although LD was generally

higher, a similar pattern was evident in H. melpomene [33]. These

emerging genetic signatures are consistent with early ideas that

these patterning loci were ‘‘supergenes’’ composed of a cluster of

tightly linked loci [21]. For example, in H. erato the D locus was

originally described as three unique loci, D, R, and Y [21] and

there has been one H. erato individual collected in the Peruvian

hybrid zone which had a DR/y recombinant phenotype [40]. In

H. melpomene both the B and Yb loci, have roughly equivalent

phenotypic effects as the D and Cr loci in H. erato, and have been

clearly shown to be parts of tightly linked clusters of loci that

control the end wing pattern phenotype. It is possible that these

‘‘clusters’’ are a series of enhancer elements that influence target

gene expression and the terminal phenotype in an overall switch-

like fashion [87]. Selection to maintain these clusters may explain

the reduced recombination rate we observed across color pattern

intervals in the pedigree-based linkage mapping of the D and Cr

intervals and the large haplotype blocks across the Yb and B

intervals in the Peruvian H. melpomene races [33]. However, in H.

erato thousands of generations of hybridization in the middle of the

hybrid zone may have allowed recombination to break apart

functional sites, creating the mosaic of different haplotypes we

observed across these intervals. Collectively, these two companion

studies serve as natural replicates of how convergence on a

similar adaptive trait can be independently derived and provide

compelling evidence that similar genetic changes can underlie the

evolution of Müllerian mimicry.

Our initial sampling of genetic variation across the color pattern

loci provides important insights into the complex haplotype

structure that potentially underlies the major phenotypic shifts

in wing color patterns. These data suggest that finer genetic

dissection of these hybrid zones and other parallel transitions will

allow direct tests of the number and type of changes that underlie

adaptive color pattern variation in Heliconius. These studies will

help pinpoint functionally important polymorphisms and deter-

mine if a single functional site or multiple sites underlies adaptive

color pattern variation and if these sites are changes in coding

regions, in cis-regulatory regions, or both. Ultimately, linking the

genetic changes underlying phenotypic variation with the

development pathways involved in patterning the wing promises

a whole new understanding of how morphological variation is

created through development and modified by natural selection

within the context of an adaptive radiation.

Methods

We generated several F2 and backcross mapping families by

crossing four different geographic races of H. erato to the same

stock of H. himera. All crosses were carried out in the Heliconius

insectaries at the University of Puerto Rico from stocks originally

collected in the wild under permit from the Ministerio del

Ambiente in Ecuador. We followed segregating variation at the D

locus in the crosses involving H. e. cyrbia, H. e. erato, H. e. etylus and

H. e. notabilis. We were also able to follow segregating variation for

the Cr locus in crosses between H. himera and H. e. cyrbia. After

eclosion, individuals were euthanized, had their wings removed for

later morphological analysis, and their bodies were stored in

DMSO at 280uC.

Genomic DNA was extracted from 1/3 of preserved thoracic

tissue for each individual using Plant DNeasy Tissue kit (Qiagen

Inc). Across the D interval, segregating variation was followed for

one microsattelite and seven gene-based markers and for seven

gene based markers across the Cr interval. The markers D23/24

and GerTra were screened using the methods described in [29,88].

All other gene-based markers were PCR amplified, the PCR

product was purified Using ExoSAP-IT (USB), and sequenced in

both directions using Big Dye Terminator v3.1 and run on a 3700

DNA Sequence Analyzer (Applied BioSystems). Due to an indel

polymorphism at Gn47 some samples could be sequenced in

the forward direction for Gn47. To overcome this, individuals

identified as recombinants at Gn47 (see below) were PCR

amplified and sequenced twice to confirm individual genotypes.

For gene-based markers, primers were designed from available H.

erato and/or H. melpomene BAC sequences, Table S1 provides the

primer sequences, PCR conditions, and marker types. Sites

and/or insertion/deletions that varied between the parents of a

mapping family were screened among the offspring of those

mapping families. To determine the distance between each marker

and a color pattern locus, we looked for evidence of recombination

between the genotype at each marker and the wing pattern

phenotype. The greater the number of individuals showing a

recombination event between a marker genotype and the color

pattern phenotype, the further that specific marker was from the

functional site(s) controlling the color pattern variation. For the D

locus, the markers Gn12, VanGogh and THAP were only screened

for a ‘recombinant panel’ of individuals. The recombinant panel

consisted of all individuals identified as recombinants at markers

Gn47 and D23/24, six individuals from each mapping that were

not recombinants at Gn47 and D23/24 and the parents of each

mapping family. This method dramatically reduced the number of

individuals screened and allowed us to efficiently determine the

number of single recombination events between each marker and

the D locus.

Targeted BAC sequencing
We screened the H. erato BAC libraries, to identify BAC clones

that spanned the D and Cr color pattern intervals. For the Cr locus,

probes were designed from the previously published H. erato

BAC clone 38A20 (AC193804) and H. melpomene BAC clones 11J7
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(CU367882), 7G12, (CT955980) and 41C10 (CR974474) [29,88].

Across the D locus, probes were designed from the H. erato BAC

clone 25K04 (AC216670) and H. melpomene BAC clones 7G5

(CU462858) 27I5 (CU467807), and 28L23 (CU467808) that have

been previously shown to be located near the D locus [31]. BAC

library probing, fingerprinting of positively identified clones, and

the sequencing and assembly of BAC clones that most extended

our tiling coverage was done using the methods described in [88].

BAC clone sequences were aligned using SLAGAN [89] to create

contiguous H. erato consensus sequences across the D and Cr color

pattern loci. SLAGAN was also used to align these H. erato

consensus sequences with available H. melpomene BAC sequences

and Bombyx mori genome sequence to confirm the order,

orientation and locations of gaps among the H. erato sequences.

The consensus H. erato sequences were then annotated using

Kaikogaas (http://kaikogaas.dna.affrc.go.jp), an automated anno-

tation package that implements several gene prediction methods to

identify potential coding regions. Locations of predicted coding

regions and conserved domains are shown in Figure S2. Primers

for probes were designed from potential coding regions using the

methods described above, in Butterfly Crosses and Fine-Mapping.

Primer sequences and PCR conditions for probes are available in

Table S1.

Population sampling
Individuals used in this study were collected from five locations

transecting 32 km across a H. erato hybrid zone in Eastern Peru

near Tarapoto. In total we sampled 76 individuals, 20 from

phenotypically ‘‘pure’’ populations of H. e. favorinus in Tarapoto

and Rio Pansillo, 14 individuals from a primarily phenotypically

‘‘pure’’ population of H. e. emma in Davidcillo, and 42 from

admixed populations in Pongo de Cainarache and Barranquitas

located near the center of the hybrid zone. Due to dominance and

strong epistasis between the three loci, when individuals have a

DemmaDemma genotype, the CremmaCremma and CremmaCrfav genotypes

are phenotypically indistinguishable. Therefore some individuals

were assigned a Cremma- dominant genotype (see [34]), indicating

the genotype of the second Cr allele is unknown. Individual’s

names, sex, race, color pattern genotype and collection location

are recorded in Table S4.

Genomic sampling
Nucleotide variation was sampled across two candidate intervals

controlling major changes in warning color patterns, as well as

three other autosomal genes unlinked to color pattern. We

sampled twelve coding regions from D interval, ten from the Cr

interval, and three coding regions from genes on unlinked

chromosomes (Table S1). Names of coding regions are based on

sequence homology to annotated genes in other organisms, or if no

sequence homology was found numbered gene names were

assigned. On average, 520 bp fragments were sampled every

47 kb across a candidate color pattern interval. Primer design for

PCR amplification and sequencing was done using Primer3 [90].

Primers for the three unlinked loci were developed by Pringle et al.

[91], and have been shown to map to different linkage groups in

H. melpomene. Primer sequences and PCR conditions for each locus

can be found in Table S1. Genomic DNA extraction, PCR

product purification and sequencing were completed using the

same methods as described above. For some individuals,

Abhydrolase was cloned from purified PCR product using TOPO

cloning kit (Invitrogen) and 4–10 clones were sequenced.

Ambiguous bases in the genomic sequences were cleaned and

trimmed manually using Sequencher (Gene Codes Corporation).

A site was determined to be heterozygous if the lower quality

nucleotide had a peak height at least 50% of the higher quality

nucleotide. Sequences were initially aligned using Sequencher and

the resulting alignments were then manually adjusted.

Genetic diversity analyses
Population genetic estimates of nucleotide diversity, population

differentiation and tests of neutrality were conducted using SITES

and HKA [92]. Nucleotide diversity was estimated as p (average

number of pair-wise differences per base pair) for all samples i)

within the H. e. favorinus population ii) within the H. e. emma

population and iii) within the admixed population. This was done

for each of the 25 sampled coding regions independently and by

concatenating all coding regions sampled on the same chromo-

some (Table S1). Tajima’s D [93] was also calculated for all coding

regions independently and by concatenating them, to examine for

departures from the neutral model of evolution. For each coding

region 10,000 coalescent simulations based on locus specific

estimates of theta were used to determine if the observed patterns

of nucleotide diversity and locus specific estimates of Tajima’s D

significantly departed from neutral expectations using the program

HKA as described in [94]. FST was estimated between the two

phenotypically pure populations and the admixed population for

each coding region and using SITES (Table 2) and FDIST2

(Table S2) [95].

Linkage disequilibrium
To determine the extent of LD across the candidate color

pattern intervals in Heliconius, we computed composite LD

estimates for 432 SNPs from the 25 coding regions we sampled.

Of the 1542 polymorphic sites identified in this study, 442 sites had

a minor allele frequency greater than 0.05 and were considered

informative for LD analyses. Multi-allelic sites that had a minor

allele with a frequency less than 0.05 were condensed to bi-allelic

SNPs by merging the minor allele genotypes. Ten polymorphic

sites had 2 or 3 minor alleles with a frequency greater than or

equal to 0.05 that were not condensed to bi-allelic SNPs and were

not included in the LD analyses. LD between the remaining 432

SNPs was executed using the commonly used composite estimate

of LD method described by Weir [96], which does not assume

HWE or that haplotypes are known . LD among the 432 SNPs

was estimated independently for i) all samples ii) within the H. e.

favorinus population iii) within the H. e. emma population and iv)

within the admixed population. LD between the 432 SNPs using

all sampled individuals was visualized with GOLD [97], by

plotting the composite r2 estimates between all pair wise SNP

combinations. To visualize the difference in mean r2 between the

three populations, a sliding window average of r2 across 50

neighboring SNPs was calculated independently for each popu-

lation and plotted by distance.

Genotype-by-phenotype association
We determined if any SNP was associated with a color pattern

phenotype using chi-squared linear trend test [96]. This test

assumes a linear relationship between the phenotype and genotype

and applies a chi-square goodness-of-fit test to determine if the

genotype at a SNP is significantly associated with a particular wing

color pattern. For the association tests we used bi-allelic and multi-

allelic SNPs with minor allele frequencies equal to or greater than

0.05. Color pattern phenotypes at the D and Cr loci were scored as

0.0 representing H. e. favorinus phenotypes, 0.5 representing hybrid

phenotypes and 1.0 H. e. emma phenotypes. Individuals with H. e.

emma D phenotypes and H. e. emma Cr phenotypes were assigned 1.0

for the D phenotype score and 0.5 for the Cr phenotype score, due

to the effects of dominance previously mentioned; varying the Cr
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value for from 0.5 to 1.0 for these individuals had a negligible

effect on the association test results (data not shown).

Quantitative examination of gene expression
We used quantitative PCR involving SYBR Green technology

to detect transcript levels of kinesin, Slu7, GPCR, Dna-J, and

VanGogh in butterfly forewing tissues. Samples of whole forewings

were dissected from December, 2008 - February, 2009 from

reared H. e. emma and H. e. favorinus stocks founded from multiple

individuals collected within 30 km of one another in Peru. We

staged individuals indoors at 25uC starting in early 5th larval instar.

Chosen larval wings were at mid-5th instar, stage 2.25–2.75 based

on the work of Reed and colleagues [98]. Pupal stages were based

on the time after the pupal molting event, including Day 1 (24hrs),

Day 3 (72hrs), and Day 5 (120hrs). We sampled three individuals

of each stage and race, resulting in 2 races 6 4 stages 6 3 bio-

logical replicates = 24 specimens. All specimens were processed

randomly from dissection through amplification stages.

We extracted total RNA from the tissues using an electric tissue

homogenizer and the RNAqueous Total RNA Isolation Kit

(Ambion). This procedure was followed by a TURBO DNA-free

(Applied Biosystems) treatment to remove genomic DNA contam-

inants. Extracted products were run through the Agilent

Bioanalyzer to ensure the RNA was of high quality. For cDNA

systhesis, 0.4 mg of each sample was added to the standard 20ml

reaction procedure outlined in the High-Capacity cDNA Reverse

Transcription Kit (Applied Biosystems). Resulting products were

diluted with an additional 50ml.

For each gene, we performed quantitative PCR on all 24

samples in triplicate to correct for technical error. We used EF-1a
as a standard to normalize the expression of the test genes. Primers

for amplification of cDNA were designed using recommended

criteria and range from 98 – 175 bp in length (see Table S3). We

ran primer sets through an initial qPCR optimization to test for

optimal primer concentrations and ran DNA-free controls to test

for primer-dimers. qPCR reactions were run using 1ml of 5mM

primers (0.5ml for GPCR), 5ml SYBR Green Mix, 1 ml template,

and water to 10 ml. Reactions were run in 384-well plates in the

Applied Biosystems 7900HT Fast Real-Time PCR machine under

standard mode and absolute quantification for 40 cycles of

95uC for 15 sec, 60uC for 60 sec. Each cycle was followed by a

dissociation step to measure the dissociation temperature of the

sample, which tests for primer-dimer and differences in sequences

among samples. A standard curve was generated for each gene

using a 1023 to 1027 dilution series drawn from a PCR amplified

product using the same primers.

To normalize Ct values from the qPCR run, we first calculated

the mean of each of the three technical replicates. We then

calculated initial concentrations for each sample for each gene

given the equation of the standard curve for that gene. These

initial concentrations were divided by the inferred concentration of

EF-1a for that sample, thus correcting for inconsistencies in initial

cDNA sample concentrations. These relative values were then log2

transformed for presentation and analysis. Log2 transformation is

necessary to normalize the variances of the samples and represents

expression differences in more biologically realistic fold differenc-

es. Significance values were obtained from a two-way ANOVA

using stage, race, and race*stage as effects. Effects of race within

each stage were further dissected for each gene using series of t-

tests and an FDR of 0.05 (threshold at p = 0.0028) to correct for

multiple testing. In addition to a general ANOVA and to compare

our results to the companion paper [33], we used a combination of

generalized linear regression models (GLMs) and Bayesian Model

Averaging (BMA) on the non-log transformed data to model the

effect of race, developmental stage, and their interactions, on gene

expression. These statistics were performed using the ‘bic.glm’

function in the ‘BMA’ package [99] implemented in R (R

Development Core Team 2008).

Supporting Information

Figure S1 LD decays rapidly with distance in Heliconius erato.

Composite LD estimates between SNPs within the same coding

region across both color pattern intervals and unlinked loci.

Dashed vertical line at 550 bp, designates the average size of

coding regions sampled and demonstrates that LD decays rapidly

within the genes.

Found at: doi:doi:10.1371/journal.pgen.1000796.s001 (0.24 MB

TIF)

Figure S2 BAC annotations of D and Cr loci. Annotations of

BAC sequences using Kaikogaas. Approximate locations of

predicted coding regions are shown along BAC sequences of the

and Cr intervals. Coding regions sampled for this study are colored

red and the annotation has a double box. All other predicted

coding regions are shown in green and the annotation has only a

single box. For predicted coding regions with significant similarity

to protein sequences in GenBank using blastp, the accession

number and organism name for the sequence with highest

similarity is given. Conserved domains identified in the PFAM

database are also shown. In general, gene content and order is

largely preserved between H. erato and H. melpomene across the D

interval (see [33]). For a more detailed annotation of the

homologous genomic regions in H. melpomene, see [33] and [101].

Found at: doi:doi:10.1371/journal.pgen.1000796.s002 (1.99 MB

PDF)

Table S1 Key locus information including gene tag/number,

location, PCR primers, and accession numbers.

Found at: doi:doi:10.1371/journal.pgen.1000796.s003 (0.06 MB

PDF)

Table S2 Summary of association results and FST estimates for

each SNP.

Found at: doi:doi:10.1371/journal.pgen.1000796.s004 (1.06 MB

TXT)

Table S3 qPCR primer information.

Found at: doi:doi:10.1371/journal.pgen.1000796.s005 (0.04 MB

PDF)

Table S4 Key sample information, including race, collection

location and color pattern genotype.

Found at: doi:doi:10.1371/journal.pgen.1000796.s006 (0.04 MB

PDF)
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