10 research outputs found

    The cost and diagnostic yield of exome sequencing for children with suspected genetic disorders: a benchmarking study

    No full text
    PurposeThis study aimed to generate benchmark estimates for the cost, diagnostic yield, and cost per positive diagnosis of diagnostic exome sequencing (ES) in heterogeneous pediatric patient populations and to illustrate how the design of an ES service can influence its cost and yield.MethodsA literature review and Monte Carlo simulations were used to generate benchmark estimates for singleton and trio ES. A cost model for the Clinical Assessment of the Utility of Sequencing and Evaluation as a Service (CAUSES) study, which is testing a proposed delivery model for diagnostic ES in British Columbia, is used to illustrate the potential effects of changing the service design.ResultsThe benchmark diagnostic yield was 34.3% (95% confidence interval (CI): 23.2-46.5) for trio ES and 26.5% (95% CI: 12.9-42.9) for singleton ES. The benchmark cost of delivery was C6,437(956,437 (95% CI: 5,305-7,704)in2016Canadiandollars(US7,704) in 2016 Canadian dollars (US4,859; 4,391[euro ]) for trio ES and C2,576(952,576 (95% CI: 1,993-3,270)(US3,270) (US1,944; 1,757[euro ]) for singleton ES. Scenario models for CAUSES suggest that alternative service designs could reduce costs but might lead to a higher cost per diagnosis due to lower yields.ConclusionBroad conclusions about the cost-effectiveness of ES should be drawn with caution when relying on studies that use cost or yield assumptions that lie at the extremes of the benchmark ranges.GENETICS in MEDICINE advance online publication, 4 January 2018; doi:10.1038/gim.2017.22

    The cost trajectory of the diagnostic care pathway for children with suspected genetic disorders

    No full text
    Purpose: This study describes the cost trajectory of the standard diagnostic care pathway for children with suspected genetic disorders in British Columbia, Canada. Methods: Average annual per-patient costs were estimated using medical records review and a caregiver survey for a cohort of 498 children referred to BC Children’s and Women’s Hospitals (C&W) with unexplained intellectual disability (the TIDE-BC study) and families enrolled in the CAUSES study, which offered diagnostic genome-wide sequencing (GWS; exome and genome sequencing) to 500 families of children with suspected genetic disorders. Results: Direct costs peaked in the first year of patients’ diagnostic odyssey, with an average of C2257perpatient(952257 per patient (95% confidence interval [CI] C2074, C2441)fordiagnostictestingandC2441) for diagnostic testing and C631 (95% CI C543,C543, C727) for specialist consultations at C&W. In subsequent years, direct costs accrued at a constant rate, with an estimated annual per-patient cost of C511(95511 (95% CI C473, C551)fordiagnostictestingandC551) for diagnostic testing and C334 (95% CI C295,C295, C369) for consultations at C&W. Travel costs and caregiver productivity loss associated with attending diagnosis-related physician appointments averaged C$1907/family/year. Conclusions: The continuing long-term accrual of costs by undiagnosed patients suggests that economic evaluations of diagnostic GWS services should use longer time horizons than have typically been used

    The Clinical Variant Analysis Tool: Analyzing the evidence supporting reported genomic variation in clinical practice.

    No full text
    PURPOSE: Genomic test results, regardless of laboratory variant classification, require clinical practitioners to judge the applicability of a variant for medical decisions. Teaching and standardizing clinical interpretation of genomic variation calls for a methodology or tool. METHODS: To generate such a tool, we distilled the Clinical Genome Resource framework of causality and the American College of Medical Genetics/Association of Molecular Pathology and Quest Diagnostic Laboratory scoring of variant deleteriousness into the Clinical Variant Analysis Tool (CVAT). Applying this to 289 clinical exome reports, we compared the performance of junior practitioners with that of experienced medical geneticists and assessed the utility of reported variants. RESULTS: CVAT enabled performance comparable to that of experienced medical geneticists. In total, 124 of 289 (42.9%) exome reports and 146 of 382 (38.2%) reported variants supported a diagnosis. Overall, 10.5% (1 pathogenic [P] or likely pathogenic [LP] variant and 39 variants of uncertain significance [VUS]) of variants were reported in genes without established disease association; 20.2% (23 P/LP and 54 VUS) were in genes without sufficient phenotypic concordance; 7.3% (15 P/LP and 13 VUS) conflicted with the known molecular disease mechanism; and 24% (91 VUS) had insufficient evidence for deleteriousness. CONCLUSION: Implementation of CVAT standardized clinical interpretation of genomic variation and emphasized the need for collaborative and transparent reporting of genomic variation

    Complex translocation disrupting TCF4 and altering TCF4 isoform expression segregates as mild autosomal dominant intellectual disability

    No full text
    Background: Mutations of TCF4, which encodes a basic helix-loop-helix transcription factor, cause Pitt-Hopkins syndrome (PTHS) via multiple genetic mechanisms. TCF4 is a complex locus expressing multiple transcripts by alternative splicing and use of multiple promoters. To address the relationship between mutation of these transcripts and phenotype, we report a three-generation family segregating mild intellectual disability with a chromosomal translocation disrupting TCF4. Results: Using whole genome sequencing, we detected a complex unbalanced karyotype disrupting TCF4 (46,XY,del(14)(q23.3q23.3)del(18)(q21.2q21.2)del(18)(q21.2q21.2)inv(18)(q21.2q21.2)t(14;18)(q23.3;q21.2)(14pter®14q23.3::18q21.2®18q21.2::18q21.1®18qter;18pter®18q21.2::14q23.3®14qter). Subsequent transcriptome sequencing, qRT-PCR and nCounter analyses revealed that cultured skin fibroblasts and peripheral blood had normal expression of genes along chromosomes 14 or 18 and no marked changes in expression of genes other than TCF4. Affected individuals had 12–33 fold higher mRNA levels of TCF4 than did unaffected controls or individuals with PTHS. Although the derivative chromosome generated a PLEKHG3-TCF4 fusion transcript, the increased levels of TCF4 mRNA arose from transcript variants originating distal to the translocation breakpoint, not from the fusion transcript. Conclusions: Although validation in additional patients is required, our findings suggest that the dysmorphic features and severe intellectual disability characteristic of PTHS are partially rescued by overexpression of those short TCF4 transcripts encoding a nuclear localization signal, a transcription activation domain, and the basic helix-loop-helix domain.Medicine, Faculty ofOther UBCNon UBCFamily Practice, Department ofMedical Genetics, Department ofPathology and Laboratory Medicine, Department ofReviewedFacult

    Hypomorphic Temperature-Sensitive Alleles of NSDHL Cause CK Syndrome

    Get PDF
    CK syndrome (CKS) is an X-linked recessive intellectual disability syndrome characterized by dysmorphism, cortical brain malformations, and an asthenic build. Through an X chromosome single-nucleotide variant scan in the first reported family, we identified linkage to a 5 Mb region on Xq28. Sequencing of this region detected a segregating 3 bp deletion (c.696_698del [p.Lys232del]) in exon 7 of NAD(P) dependent steroid dehydrogenase-like (NSDHL), a gene that encodes an enzyme in the cholesterol biosynthesis pathway. We also found that males with intellectual disability in another reported family with an NSDHL mutation (c.1098 dup [p.Arg367SerfsX33]) have CKS. These two mutations, which alter protein folding, show temperature-sensitive protein stability and complementation in Erg26-deficient yeast. As described for the allelic disorder CHILD syndrome, cells and cerebrospinal fluid from CKS patients have increased methyl sterol levels. We hypothesize that methyl sterol accumulation, not only cholesterol deficiency, causes CKS, given that cerebrospinal fluid cholesterol, plasma cholesterol, and plasma 24S-hydroxycholesterol levels are normal in males with CKS. In summary, CKS expands the spectrum of cholesterol-related disorders and insight into the role of cholesterol in human development

    Genome-wide sequencing and the clinical diagnosis of genetic disease: The CAUSES study

    No full text
    Genome-wide sequencing (GWS) is a standard of care for diagnosis of suspected genetic disorders, but the proportion of patients found to have pathogenic or likely pathogenic variants ranges from less than 30% to more than 60% in reported studies. It has been suggested that the diagnostic rate can be improved by interpreting genomic variants in the context of each affected individual's full clinical picture and by regular follow-up and reinterpretation of GWS laboratory results. Trio exome sequencing was performed in 415 families and trio genome sequencing in 85 families in the CAUSES study. The variants observed were interpreted by a multidisciplinary team including laboratory geneticists, bioinformaticians, clinical geneticists, genetic counselors, pediatric subspecialists, and the referring physician, and independently by a clinical laboratory using standard American College of Medical Genetics and Genomics (ACMG) criteria. Individuals were followed for an average of 5.1 years after testing, with clinical reassessment and reinterpretation of the GWS results as necessary. The multidisciplinary team established a diagnosis of genetic disease in 43.0% of the families at the time of initial GWS interpretation, and longitudinal follow-up and reinterpretation of GWS results produced new diagnoses in 17.2% of families whose initial GWS interpretation was uninformative or uncertain. Reinterpretation also resulted in rescinding a diagnosis in four families (1.9%). Of the families studied, 33.6% had ACMG pathogenic or likely pathogenic variants related to the clinical indication. Close collaboration among clinical geneticists, genetic counselors, laboratory geneticists, bioinformaticians, and individuals’ primary physicians, with ongoing follow-up, reanalysis, and reinterpretation over time, can improve the clinical value of GWS
    corecore