9 research outputs found

    Measurement report: Spectral and statistical analysis of aerosol hygroscopic growth from multi-wavelength lidar measurements in Barcelona, Spain

    Get PDF
    This paper presents the estimation of the hygroscopic growth parameter of atmospheric aerosols retrieved with a multi-wavelength lidar, a micro-pulse lidar (MPL) and daily radiosoundings in the coastal region of Barcelona, Spain. The hygroscopic growth parameter, γ, parameterizes the magnitude of the scattering enhancement in terms of the backscatter coefficient following Hänel parameterization. After searching for time-colocated lidar and radiosounding measurements (performed twice a day, all year round at 00:00 and 12:00 UTC), a strict criterion-based procedure (limiting the variations of magnitudes such as water vapor mixing ratio (WMVR), potential temperature, wind speed and direction) is applied to select only cases of aerosol hygroscopic growth. A spectral analysis (at the wavelengths of 355, 532 and 1064 nm) is performed with the multi-wavelength lidar, and a climatological one, at the wavelength of 532 nm, with the database of both lidars. The spectral analysis shows that below 2 km the regime of local pollution and sea salt γ decreases with increasing wavelengths. Since the 355 nm wavelength is sensitive to smaller aerosols, this behavior could indicate slightly more hygroscopic aerosols present at smaller size ranges. Above 2 km (the regime of regional pollution and residual sea salt) the values of γ at 532 nm are nearly the same as those below 2 km, and its spectral behavior is flat. This analysis and others from the literature are put together in a table presenting, for the first time, a spectral analysis of the hygroscopic growth parameter of a large variety of atmospheric aerosol hygroscopicities ranging from low (pure mineral dust, γ &lt;0.2) to high (pure sea salt, γ &gt; 1.0) hygroscopicity. The climatological analysis shows that, at 532 nm, γ is rather constant all year round and has a large monthly standard deviation, suggesting the presence of aerosols with different hygroscopic properties all year round. The annual γ is 0.55 ± 0.23. The height of the layer where hygroscopic growth was calculated shows an annual cycle with a maximum in summer and a minimum in winter. Former works describing the presence of recirculation layers of pollutants injected at various heights above the planetary boundary layer (PBL) may explain why γ, unlike the height of the layer where hygroscopic growth was calculated, is not season-dependent. The subcategorization of the whole database into No cloud and Below-cloud cases reveals a large difference of γ in autumn between both categories (0.71 and 0.33, respectively), possibly attributed to a depletion of inorganics at the point of activation into cloud condensation nuclei (CCN) in the Below-cloud cases. Our work calls for more in situ measurements to synergetically complete such studies based on remote sensing.</p

    An explicit formulation for the retrieval of the overlap function in an elastic and Raman aerosol lidar

    Get PDF
    We derive an explicit (i.e., non-iterative) formula for the retrieval of the overlap function in an aerosol lidar with both elastic and Raman N2 and/or O2 channels used for independent measurements of aerosol backscatter and extinction coefficients. The formula requires only the measured, range-corrected elastic and the corresponding Raman signals, plus an assumed lidar ratio. We assess the influence of the lidar ratio error in the overlap function retrieval and present retrieval examples.This research has been supported by the Agencia Estatal de Investigación (grant no. PID2019-103886RB-I00) as well as the H2020 Environment (grant nos. 871115 and 101008004) and the H2020 Excellent Science (grant no. 778349) programs.Peer ReviewedPostprint (published version

    Climatological assessment of the vertically resolved optical and microphysical aerosol properties by lidar measurements, sun photometer, and in situ observations over 17 years at Universitat Politècnica de Catalunya (UPC) Barcelona

    Get PDF
    Aerosols are one of the most important pollutants in the atmosphere and have been monitored for the past few decades by remote sensing and in situ observation platforms to assess the effectiveness of government-managed reduction emission policies and assess their impact on the radiative budget of the Earth's atmosphere. In fact, aerosols can directly modulate incoming short-wave solar radiation and outgoing long-wave radiation and indirectly influence cloud formation, lifetime, and precipitation. In this study, we quantitatively evaluated long-term temporal trends and seasonal variability from a climatological point of view of the optical and microphysical properties of atmospheric particulate matter at the Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, over the past 17 years, through a synergy of lidar, sun photometer, and in situ concentration measurements. Interannual temporal changes in aerosol optical and microphysical properties are evaluated through the seasonal Mann–Kendall test. Long-term trends in the optical depth of the recovered aerosol; the Ångström exponent (AE); and the concentrations of PM10, PM2.5, and PM1 reveal that emission reduction policies implemented in the past decades were effective in improving air quality, with consistent drops in PM concentrations and optical depth of aerosols. The seasonal analysis of the 17-year average vertically resolved aerosol profiles obtained from lidar observations shows that during summer the aerosol layer can be found up to an altitude of 5 km, after a sharp decay in the first kilometer. In contrast, during the other seasons, the backscatter profiles fit a pronounced exponential decay well with a well-defined scale height. Long-range transport, especially dust outbreaks from the Sahara, is likely to occur throughout the year. During winter, the dust aerosol layers are floating above the boundary layer, while during the other seasons they can penetrate the layer. The analysis also revealed that intense, short-duration pollution events during winter, associated with dust outbreaks, have become more frequent and intense since 2016. This study sheds some light on the meteorological processes and conditions that can lead to the formation of haze and helps decision makers adopt mitigation strategies to preserve large metropolitan areas in the Mediterranean basin.This research has been supported by the European Union through NextgenerationEU funds and by the following projects along the years: FP5 EARLINET project (grant no. ID EVR1-CT-1999-40003), FP6 EARLINET-ASOS (ID: 25991), FP7 ACTRIS (ID: 262254), H2020 ACTRIS-2 (ID: 654109), ACTRIS-PPP (ID: 739530), ACTRIS IMP (ID: 871115) and ATMO-ACCESS (ID: 101008004), projects of the Spanish National Research programs (grant nos. TIC 431/93, AMB96-1144-C02-01, REN2000-1907-CE, REN2000-1754- C02-02/CLI, REN2003-09753-C02-C02/CLI, REN2003-09753- C02-C CGL2008-01330-E/CLI 02/CLI, REN2002-12784-E, CGL2005-5131-E, CGL2006-27108-E/CLI, CGL2006-26149- E/CLI, CGL2007-28871-/CLI, CTM2006-27154-E/TECNO, TEC2006-07850/TCM, TEC2009-09106, TEC2012-34575, TEC2015-63832-P and PID2019-103886RB-I00), the project of the Catalan Regional Government IMMPACTE, and the ESA project (grant no. 21487/08/NL/HE)Peer ReviewedPostprint (published version

    Lidar Observations in South America. Part I - Mesosphere and Stratosphere

    Get PDF
    South America covers a large area of the globe and plays a fundamental function in its climate change, geographical features, and natural resources. However, it still is a developing area, and natural resource management and energy production are far from a sustainable framework, impacting the air quality of the area and needs much improvement in monitoring. There are significant activities regarding laser remote sensing of the atmosphere at different levels for different purposes. Among these activities, we can mention the mesospheric probing of sodium measurements and stratospheric monitoring of ozone, and the study of wind and gravity waves. Some of these activities are long-lasting and count on the support from the Latin American Lidar Network (LALINET). We intend to pinpoint the most significant scientific achievements and show the potential of carrying out remote sensing activities in the continent and show its correlations with other earth science connections and synergies. In Part I of this chapter, we will present an overview and significant results of lidar observations in the mesosphere and stratosphere. Part II will be dedicated to tropospheric observations

    Lidar Observations in South America. Part II - Troposphere

    Get PDF
    In Part II of this chapter, we intend to show the significant advances and results concerning aerosols’ tropospheric monitoring in South America. The tropospheric lidar monitoring is also supported by the Latin American Lidar Network (LALINET). It is concerned about aerosols originating from urban pollution, biomass burning, desert dust, sea spray, and other primary sources. Cloud studies and their impact on radiative transfer using tropospheric lidar measurements are also presented

    Analysis of atmospheric aerosol properties using lidar measurements and their impact on radiative budget in Barcelona over the past 20 years

    Get PDF
    Aerosols are significant atmospheric constituents that modulate radiation and cloud processes. We evaluated 17-year aerosol profile trends in Barcelona, Spain, from lidar measurements. In summer aerosol reaches 5 km, while in the other seasons it exhibits clear exponential decay. Sahara dust transport affects all seasons, with winter layers above and others penetrating the boundary layer. This study informs the formation of haze and urban preservation strategies in the Mediterranean. The analysis puts in evidence that the averaged net radiative effect is of cooling at both surface level and top of the atmosphere.This work has been made possible through the efforts of many people, whom it would be too long to mention, and the funding of many grants through the years, in particular European projects of different framework programmes (FP5 EARLINET project (ID EVR1-CT-1999-40003), FP6 EARLINET-ASOS (ID: 25991), FP7 ACTRIS (ID: 262254), H2020 ACTRIS-2 (ID: 654109), ACTRIS-PPP (ID: 739530), ACTRIS IMP (ID: 871115) and ATMO-ACCESS (ID: 101008004)), projects of the Spanish National Research Programmes (refs. TIC 431/93, AMB96-1144-C02-01, REN2000-1907-CE, REN2000-1754-C02-02 / CLI, REN2003-09753-C02-C02 / CLI, REN2003-09753-C02-C CGL2008- 01330-E/CLI 02 / CLI, REN2002-12784-E, CGL2005-5131-E, CGL2006-27108-E/CLI, CGL2006-26149-E/CLI, CGL2007-28871-/CLI, CTM2006-27154-E/TECNO, TEC2006-07850/TCM, TEC2009-09106, TEC2012-34575, TEC2015-63832-P and PID2019-103886RB-I00), the project of the Catalan Regional Government IMMPACTE, and the ESA project No. nº 21487/08/NL/HE. The support of the European Union through NextGenerationEU funds is also gratefully acknowledged.Peer ReviewedPostprint (author's final draft

    Geometrical and optical properties of cirrus clouds in Barcelona, Spain: analysis with the two-way transmittance method of 4 years of lidar measurements

    No full text
    International audienceIn this paper a statistical study of cirrus geometrical and optical properties based on 4 years of continuous ground-based lidar measurements with the Barcelona (Spain) Micro Pulse Lidar (MPL) is analysed. First, a review of the literature on the two-way transmittance method is presented. This method is a well-known lidar inversion method used to retrieve the optical properties of an aerosol–cloud layer between two molecular (i.e. aerosol and cloud-free) regions below and above, without the need to make any a priori assumptions about their optical and/or microphysical properties. Second, a simple mathematical expression of the two-way transmittance method is proposed for both ground-based and spaceborne lidar systems. This approach of the method allows the retrieval of the cloud optical depth, the cloud column lidar ratio and the vertical profile of the cloud backscatter coefficient. The method is illustrated for a cirrus cloud using measurements from the ground-based MPL and from the spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Third, the database is then filtered with a cirrus identification criterion based on (and compared to) the literature using only lidar and radiosonde data. During the period from November 2018 to September 2022, 367 high-altitude cirrus clouds were identified at 00:00 and 12:00 UTC, of which 203 were successfully inverted with the two-way transmittance method. The statistical results of these 203 high-altitude cirrus clouds show that the cloud thickness is 1.8 ± 1.1 km, the mid-cloud temperature is −51 ± 8 ∘C and the linear cloud depolarization ratio is 0.32 ± 0.13. The application of the transmittance method yields an average cloud optical depth (COD) of 0.36 ± 0.45 and a mean effective column lidar ratio of 30 ± 19 sr. Statistical results of the errors associated with the two-way transmittance method retrievals are also provided. The highest occurrence of cirrus is observed in spring and the majority of cirrus clouds (48 %) are visible (0.03  0.3) with a percentage of 38 %. Together with results from other sites, possible latitudinal dependencies have been analysed together with correlations between cirrus cloud properties. For example, we noted that in Barcelona the COD correlates positively with the cloud base temperature, effective column lidar ratio and linear cloud depolarization ratio and negatively with the cloud base height

    Use of pure rotational Raman channels for lidar measurement of aerosol extinction coefficient: the EARLINET/ACTRIS Barcelona station experience

    No full text
    Advances in interference filter technology permit currently using selected parts of the N2 and O2 pure rotational Raman spectra with very low temperature sensitivity, while rejecting sufficiently the elastic return. The Raman technique to retrieve the aerosol extinction coefficient can then be used with higher signal-to-noise ratios, because of a higher (about 8 times) effective differential backscatter cross-section as compared to the cross-section of the N2 vibro-rotational spectra. The design and results of pure rotational Raman channels at 354 nm and 530 nm allowing daytime aerosol extinction measurements implemented at the EARLINET/ACTRIS Barcelona lidar station are presented and discussed. © 2022 SPIE.The authors acknowledge the funding of this research by the Spanish Ministry for Science and Innovation for the project PID2019-103886RB-I00 and its support to ACTRIS ERIC. The authors also acknowledge the support of the European Commission through the Horizon 2020 Research and Innovation Framework Programme projects ACTRIS IMP (grant agreement No 871115) and ATMO-ACCESS (grant agreement No 101008004)Peer ReviewedPostprint (published version

    Evaluation of the Accuracy of the Aerosol Optical and Microphysical Retrievals by the GRASP Algorithm from Combined Measurements of a Polarized Sun-Sky-Lunar Photometer and a Three-Wavelength Elastic Lidar

    No full text
    International audienceThe versatile Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm exploits the advantages of synergic ground-based aerosol observations such as radiometric (sensitive to columnar aerosol optical and microphysical properties) and lidar (sensitive to vertical distribution of the optical properties) observations. The synergy is possible when the complementary data is mutually constrained by GRASP parametrization that includes, for the first time ever, the degree of linear polarization (DoLP) parameter measured by a polarized sun-sky-lunar AERONET photometer (380, 440, 500, 675, 870, 1020, and 1640 nm) in synergy with the vertical profiles from an elastic lidar (355, 532, and 1064 nm). First, a series of numerical tests is performed using simulated data generated using a climatology of data and ground-based measurements. The inversions are performed with and without random noise for five different combinations of input data, starting from the AERONET-like dataset and increasing to the complex one by adding more information for three aerosol scenarios: I—high aerosol optical depth (AOD) with dominant coarse mode; II—low AOD with dominant coarse mode; III—high AOD with dominant fine mode. The inclusion of DoLP improves (i) the retrieval accuracy of the fine-mode properties when it is not dominant; (ii) the retrieval accuracy of the coarse-mode properties at longer wavelengths and that of the fine-mode properties at shorter wavelengths; (iii) the retrieval accuracy of the coarse-mode real part of the refractive index (up to 36% reduction), but has no effect on the retrieval of the imaginary part; (iv) reduces up to 83% the bias of the sphere fraction (SF) retrieval in coarse-mode dominated regimes; and (v) the root mean square error (RMSE) of the retrieval for most of the parameters in all scenarios. In addition, the addition of more photometer channels in synergy with a three-wavelength elastic lidar reduces the RMSE for the real part (67% in the coarse mode) and the imaginary part (35% in the fine mode) of the refractive index, the single scattering albedo (38% in the fine mode), the lidar ratio (20% in the coarse mode), and the SF (43%)
    corecore