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ABSTRACT  

Aerosols are significant atmospheric constituents that modulate radiation and cloud processes. We evaluated 17-year 
aerosol profile trends in Barcelona, Spain, from lidar measurements. In summer aerosol reaches 5 km, while in the other 
seasons it exhibits clear exponential decay. Sahara dust transport affects all seasons, with winter layers above and others 
penetrating the boundary layer. This study informs the formation of haze and urban preservation strategies in the 
Mediterranean. The analysis puts in evidence that the averaged net radiative effect is of cooling at both surface level and 
top of the atmosphere.   
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1 INTRODUCTION 
Aerosols have a major influence on human health,1–3 environment,4, 5 and climate.6 Their transient nature, which spans 
several days to weeks, makes them potent drivers of climate and air quality dynamics. Derived from various sources, 
from natural phenomena, such as dust7 and sea salt, to human activities, such as combustion and industrial operations, 
their impact encompasses human health, urban heat modulation, and climate modulation. In urban settings, aerosols 
significantly shape the effect of urban heat islands, particularly during heat waves.8–10 In addition, their climatic 
repercussions are multifaceted. Aerosols scatter and absorb solar radiation, affecting the Earth’s energy balance and 
generating cooling or warming effects.11 The interplay of aerosol emissions, composition, and climate has considerable 
implications and even influences atmospheric stability, circulation, and precipitation.12,13 Importantly, these aerosols 
significantly alter the radiative forcing, resulting in a negative effective radiative forcing of -1.3 W/m2 in the industrial 
era. Despite advancements in assessing aerosol effects, challenges remain in emission databases, particularly for 
absorbing aerosols such as biomass burning and dust. A proposed1 top-down approach suggests higher emission values 
than traditional methodologies, hinting at the potential significance of such data. To dissect these complexities, our study 
combines comprehensive lidar data from the EARLINET/ACTRIS research infrastructure14,15 to assess changes in 
aerosol properties over the past 17 years in Barcelona, Spain. In the context of an evolving Mediterranean climate and 
impending ecological changes, this research has far-reaching implications, potentially illuminating the role of aerosols in 
offsetting climate change and inform future adaptation strategies. 

2 METHODOLOGY 
2.1 Lidar 

Lidar, an optically active remote sensing technique that uses a laser16 as a source, has gained prominence in atmospheric 
research. It provides essential information about the vertical distribution of aerosols, clouds, and gas properties, 
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including their optical and microphysical characteristics. Applied in various atmospheric studies, from air quality 
monitoring to cloud structure analysis, and even greenhouse gas measurements, lidar offers high vertical and temporal 
resolution for regional and local-scale investigations. Different lidar techniques, such as elastic,17,18 Raman, Dial, 
Doppler, and high spectral resolution laser (HSRL), cater to diverse assumptions, allowing property retrieval with 
varying precision. 

Within the EARLINET/ACTRIS research infrastructure, aerosol lidar observations are accessible, among them those of 
the multiwavelength Raman lidar at Universitat Politècnica de Catalunya (UPC). The system is equipped with an 
Nd:YAG laser source with second- and third-harmonic generators. In its current status, it is the third embodiment of the 
Barcelona EARLINET lidar station, with eight receiving channels in an elastic/Raman aerosol/water-vapor 
configuration. It transmits pulses at 1064-nm (NIR), 532-nm (visible), and 355 nm (UV) wavelengths, and receives three 
elastic, three Raman (one for water vapor), and two depolarization channels. This enables aerosol profiling at three key 
harmonics: 355, 532, and 1064 nm, further enhancing the versatility of the lidar system. 

2.2 Fu-Liou-Gu Radiative Transfer Model 

The Fu-Liou-Gu (FLG) radiative transfer model19,20 is a well-established tool commonly utilized to simulate radiative 
processes in the atmosphere of the Earth. While primarily developed for satellite and ground-based radiometric 
observations, its application has extended using lidar measurements as input. The FLG model enables the assessment of 
radiative fluxes and heating rates to assess the radiative budget of the atmosphere-Earth system. 

The FLG model incorporates scattering and absorption processes to simulate the interaction of light with atmospheric 
particles and gases. In our study, we used the aerosol optical properties recovered by UPC lidar as input for 
computations. 

2.3 Long-term seasonal lidar observations 

Quantifying seasonal variability in vertically resolved optical properties retrieved by lidar observations remains crucial 
from a climatological perspective. To address this, we divided the year into four seasons: December-January-February 
(DJF), March-April-May (MAM), June-July-August (JJA), and September-October-November (SON). Averaged 
profiles for each season were obtained by calculating the median of level 2 backscattering atmospheric profiles from 
UPC lidar, mitigating outlier effects. For the period 2004 to 2020, quality-assured lidar aerosol backscatter profiles 
totaled 2630 at 532 nm. While cloud cover and adverse weather conditions led to fewer backscatter profiles in fall and 
winter, spring and summer exhibited higher average profiles.  

3 RESULTS 
3.1 Geometrical analysis and suggestions 

The corresponding median average profiles, displayed in Figure 1 with relative accuracy, highlight the distinctions 
between seasons. In particular, the summer aerosol layer, which decreased sharply in the first km, extended to 5 km in 
altitude. In contrast, backscatter profiles during spring, fall, and winter exhibited a more pronounced exponential decline. 
Consistent steep drop during winter up to 1.7 km indicated locally sourced aerosols, while other profiles suggested 
elevated boundary layer heights or upper air aerosol transport, particularly prevalent during summer months. 

During the months of June, July, and August, the aerosol backscatter profile indicates that aerosol loading during this 
season extends to 5 km. On the contrary, the backscatter profile for winter, which includes lidar observations in 
December, January, and February, shows a steep exponential decline, with aerosols absent beyond 2.5 km. For spring 
(March, April, May) and fall (September, October, November), the aerosol backscatter profiles also exhibit exponential 
decay patterns, although with elongated tails indicating aerosol presence up to 3 km in both cases. Spring, fall and, in 
particular, winter profiles can be accurately described by exponential curves fall and, particularly, a relative scale height 
denoted as H.  

As an example, during winter, a scale height of H=0.61 km implies that around 63% of the aerosol load is confined 
below this height. We considered upper transport due to dust outbreaks, while aerosols from surface up to 1.7 Km are 
considered local urban background.  



 
 

 
 

 
 

                       
Figure 1. Vertically resolved median backscattering profiles for DJF, MAM, JJA, and SON. Error bars are obtained by computing the 
standard error. The spatial resolution is a constant and fixed at 60 m. 

 

3.2  Radiative effects. 

We also analyzed the radiative effects based on the seasonal averaged bakcscattering profiles We considered an urban 
environment with a surface albedo of 0.12. We computed the heating rate (K/day) at noon for each central month of the 
four seasons, i.e., January, April, July, and October, transforming the backscattering profile into optical depth, using a 
lidar ratio if 50sr for dust particles and 70sr for polluted environment particles. We report the results of the FLG 
calculations in Figure 2. The heating rate profiles show general atmospheric heating, which more or less follows the 
backscattering profile. In Table 1, we also report the radiative effects at the top of the atmosphere (TOA) and the surface 
(SFC), respectively. 

The atmospheric energy budget (ATM) is the difference between the TOA and surface energy budgets; it represents the 
energy that is exchanged between the surface and the atmosphere, and it reflects the impact of atmospheric processes on 
the surface energy budget. 

3.3 Trends 

The Mann-Kendall21 analysis of seasonal averages applied to the integrated backscatter coefficient (units sr-1) did not 
reveal any significant trend in the boundary layer over the studied period. However, a small increase of this parameter in 
the 3 km – 8 km height of 5.48 × 10-8 sr-1 year-1 (fig. 3) seems to indicate an increase of aerosols advected in the free 
troposphere from distant sources (biomass burning and dust outbreaks).  

 



 
 

 
 

 
 

                            
Figure 2. Vertically resolved median Heating Rate profiles for DJF, MAM, JJA, and SON. 

 

 

Table 1. Net radiative effect of seasonal averaged atmospheric aerosols 

Season SFC (W/m2) TOA (W/m2) ATM (W/m2) 

DJF -12.2 -8.8 3.4 

MAM -13.0 -7.9 5.1 

JJA -25.4 -13.1 12.3 

SON -14.9 -8.1 6.8 

 



 
 

 
 

 
 

 
Figure 3. Sen’s slope for the seasonal integrated-backscatter median profiles in the range 3 km – 8 km between 2004 and 2020.  

4 CONCLUSIONS 
This paper has presented a preliminary exploitation of the long-term database of lidar profiles obtained by the 
EARLINET/ACTRIS Barcelona station from 2004 to 2020. It sets the framework of further analyses that can be carried 
on data from this station and of all the EARLINET/ACTRIS stations in general, whose data are publicly available at 
https://www.earlinet.org/index.php?id=125 and at the general ACTRIS data portal (https://www.actris.eu/topical-
centre/data-centre), where data on aerosol in situ measurements, as well as on clouds and trace gases, obtained by both in 
situ and remote sensing techniques, are also found. These data provide information useful for all the time scales, from 
events affecting air quality to assessing climate trends. 

The lidar data of the Barcelona station show a clear difference in the median backscatter coefficient profiles at 532 nm 
between the summer months and the rest of the year. In summer the median profile show aerosols up to 5 km, with a 
center of mass around 2.5 km. Median profiles for the other seasons can be well approximated by exponential decays 
with different scales. Dust outbreaks float over the boundary layer in winter time, while they can be embedded in it in the 
other seasons. No noticeable trend of the integrated backscatter profiles is found in the boundary layer, but a small 
increasing trend of 5.48 × 10-8 sr-1 year-1 is revealed in the 3 km – 8km range for the studied time period, possibly 
indicating increased occurrence of long-range aerosol advections.  

A first approach to the aerosol radiative effects at noon for the central month of each season has also been performed 
using the Fu-Liou-Gu radiative transfer model. 
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