789 research outputs found

    Superconductivity in the Nb2SnC compound

    Full text link
    Nb2SnC is a member of the large family of lamellar materials that crystallize in the hexagonal structure with space group P63/mmc which are isomorphs with Cr2AlC, also named H-phase. In spite of the great number of compounds which belong to this family, the superconductivity has been reported only for two cases: Mo2GaC and Nb2SC. In this work we show that superconductivity can be observed in Nb2SnC depending on the synthesis method used. The quality of the superconductor is strongly dependent of the synthesis method and the optimal results were reached for samples synthesized at 2.5 GPa and 523 +/- 50oC. This sample showed a critical temperature close to 7.8K, revealed from magnetization and transport measurement, the highest critical temperature reported up to now for an H-phase.Comment: paper with 12 pages and 4 figure

    Micromegas operation in high pressure xenon: charge and scintillation readout

    Full text link
    The operational characteristics of a Micromegas operating in pure xenon at the pressure range of 1 to 10 bar are investigated. The maximum charge gain achieved in each pressure is approximately constant, around 4x10^2, for xenon pressures up to 5 bar and decreasing slowly above this pressure down to values somewhat above 10^2 at 10 bar. The MM presents the highest gains for xenon pressures above 4 bar, when compared to other micropattern gaseous multipliers. The lowest energy resolution obtained for X-rays of 22.1 keV exhibits a steady increase with pressure, from 12% at 1bar to about 32% at 10 bar. The effective scintillation yield, defined as the number of photons exiting through the MM mesh holes per primary electron produced in the conversion region was calculated. This yield is about 2x10^2 photons per primary electron at 1 bar, increasing to about 6x10^2 at 5 bar and, then, decreasing again to 2x10^2 at 10 bar. The readout of this scintillation by a suitable photosensor will result in higher gains but with increased statistical fluctuations.Comment: 22 pages, 11 figure

    Magneto-optical trapping of bosonic and fermionic neon isotopes and their mixtures: isotope shift of the ^3P_2 to ^3D_3 transition and hyperfine constants of the ^3D_3 state of Ne-21

    Full text link
    We have magneto-optically trapped all three stable neon isotopes, including the rare Ne-21, and all two-isotope combinations. The atoms are prepared in the metastable ^3P_2 state and manipulated via laser interaction on the ^3P_2 to ^3D_3} transition at 640.2nm. These cold (T = 1mK) and environmentally decoupled atom samples present ideal objects for precision measurements and the investigation of interactions between cold and ultracold metastable atoms. In this work, we present accurate measurements of the isotope shift of the ^3P_2 to ^3D_3 transition and the hyperfine interaction constants of the ^3D_3 state of Ne-21. The determined isotope shifts are (1625.9\pm0.15)MHz for Ne-20 to Ne-22, (855.7\pm1.0)MHz for Ne-20 to Ne-21, and (770.3\pm1.0)MHz for Ne-21 to Ne-22. The obtained magnetic dipole and electric quadrupole hyperfine interaction constants are A(^3D_3)= (-142.4\pm0.2)MHz and B(^3D_3)=(-107.7\pm1.1)MHz, respectively. All measurements give a reduction of uncertainty by about one order of magnitude over previous measurements

    The Benefits of Physical Activity on Climacteric Women

    Get PDF
    As the population ages, there is a need of developing ways to prevent or revert the deleterious effects of aging, especially in climacteric women who suffer with the problems caused by hormonal changes. Exercise is a nonmedicated intervention that can be applied on that population. The benefits of physical activity can positively change body composition, increase levels of muscular strength, balance, and functional capacity. Strength training, aerobic exercise, whole body vibration, and aquatic exercises are some of the modalities that health professionals can prescript to these individuals. Although there are many studies about these exercises, a technique called blood flow restriction is emerging as an alternative to high load exercises but with the same benefits

    IKKβ targeting reduces KRAS-induced lung cancer angiogenesis in vitro and in vivo: A potential anti-angiogenic therapeutic target

    Get PDF
    Objectives: The ability of tumor cells to drive angiogenesis is an important cancer hallmark that positively correlates with metastatic potential and poor prognosis. Therefore, targeting angiogenesis is a rational therapeutic approach and dissecting proangiogenic pathways is important, particularly for malignancies driven by oncogenic KRAS, which are widespread and lack effective targeted therapies. Based on published studies showing that oncogenic RAS promotes angiogenesis by upregulating the proangiogenic NF-κB target genes IL-8 and VEGF, that NF-κB activation by KRAS requires the IKKβ kinase, and that targeting IKKβ reduces KRAS-induced lung tumor growth in vivo, but has limited effects on cell growth in vitro, we hypothesized that IKKβ targeting would reduce lung tumor growth by inhibiting KRAS-induced angiogenesis. Materials and methods: To test this hypothesis, we targeted IKKβ in KRAS-mutant lung cancer cell lines either by siRNA-mediated transfection or by treatment with Compound A (CmpdA), a highly specific IKKβ inhibitor, and used in vitro and in vivo assays to evaluate angiogenesis. Results and conclusions: Both pharmacological and siRNA-mediated IKKβ targeting in lung cells reduced expression and secretion of NF-κB-regulated proangiogenic factors IL-8 and VEGF. Moreover, conditioned media from IKKβ-targeted lung cells reduced human umbilical vein endothelial cell (HUVEC) migration, invasion and tube formation in vitro. Furthermore, siRNA-mediated IKKβ inhibition reduced xenograft tumor growth and vascularity in vivo. Finally, IKKβ inhibition also affects endothelial cell function in a cancer-independent manner, as IKKβ inhibition reduced pathological retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Taken together, these results provide a novel mechanistic understanding of how the IKKβ pathway affects human lung tumorigenesis, indicating that IKKβ promotes KRAS-induced angiogenesis both by cancer cell-intrinsic and cancer cell-independent mechanisms, which strongly suggests IKKβ inhibition as a promising antiangiogenic approach to be explored for KRAS-induced lung cancer therapy

    Electron Collisions With Ammonia And Formamide In The Low- And Intermediate-energy Ranges

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)We report an investigation on electron collisions with two nitrogen-containing compounds, namely ammonia (NH3) and formamide (NH2CHO). For ammonia, both theoretical and experimental differential, integral, and momentum-transfer cross sections, as well as calculated grand-total and total absorption cross sections, are reported in the 50-500 eV incident energy range. Calculated results of various cross sections are also reported for energies below 50 eV. Experimentally, angular distributions of the scattered electrons were measured using a crossed electron beam-molecular beam geometry and then converted to absolute differential cross sections using the relative flow technique. Absolute integral and momentum-transfer cross sections for elastic e - ammonia scattering were also derived from the measured differential cross sections. For formamide, only theoretical cross sections are presented in the 1-500 eV incident energy range. A single-center-expansion technique combined with the method of Padé was used in our calculations. For both targets, our calculated cross sections are compared with the present measured data and with the theoretical and experimental data available in the literature and show generally good agreement. Moreover, for formamide, two shape resonances located at 3.5 eV and 15 eV which correspond to the continuum 2A'' and 2A' scattering symmetries, respectively, are identified. The former can be associated to the 2B1 shape resonance in formaldehyde located at around 2.5 eV, whereas the latter can be related to the 2E resonance in ammonia at about 10 eV. Such correspondence is very interesting and so supports the investigation on electron interaction with small building blocks, instead of with larger biomolecules.906CAPES; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; FAPESP; Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., (2000) Science, 287, p. 1658. , SCIEAS 0036-8075Huels, M.A., Boudaïffa, B., Cloutier, P., Hunting, D., Sanche, L., (2003) J. Am. Chem. Soc., 125, p. 4467. , JACSAT 0002-7863Sugohara, R.T., Homem, M.G.P., Sanches, I.P., De Moura, A.F., Lee, M.T., Iga, I., (2011) Phys. Rev. A, 83, p. 032708. , PLRAAN 1050-2947Lee, M.-T., De Souza, G.L.C., Machado, L.E., Brescansin, L.M., Dos Santos, A.S., Lucchese, R.R., Sugohara, R.T., Iga, I., (2012) J. Chem. Phys., 136, p. 114311. , JCPSA6 0021-9606De Souza, G.L.C., Lee, M.-T., Sanches, I.P., Rawat, P., Iga, I., Dos Santos, A.S., Machado, L.E., Lucchese, R.R., (2010) Phys. Rev. A, 82, p. 012709. , PLRAAN 1050-2947Sugohara, R.T., Homem, M.G.P., Iga, I., De Souza, G.L.C., Machado, L.E., Ferraz, J.R., Dos Santos, A.S., Lee, M.-T., (2013) Phys. Rev. A, 88, p. 022709. , PLRAAN 1050-2947Sato, T., Shibata, F., Goto, T., (1986) Chem. Phys., 108, p. 147. , CMPHC2 0301-0104Brüche, E., (1927) Ann. Phys. (Leipzig), 83, p. 1065. , ANPYA2 0003-3804Sueoka, O., Mori, S., (1984) J. Phys. Soc. Jpn., 53, p. 2491. , JUPSAU 0031-9015Szmytkowski, C., Maciag, K., Karwarsz, G., Filipović, D., (1989) J. Phys. B, 22, p. 525. , JPAPEH 0953-4075Zecca, A., Karwasz, G.P., Brusa, R.S., (1992) Phys. Rev. A, 45, p. 2777. , PLRAAN 1050-2947García, G., Manero, F., (1996) J. Phys. B, 29, p. 4017. , JPAPEH 0953-4075Ariyasinghe, W.M., Wijeratne, T., Palihawadana, P., (2004) Nucl. Instrum. Meth. B, 217, p. 389Jones, N.C., Field, D., Lunt, S.L., Ziesel, J.P., (2008) Phys. Rev. A, 78, p. 042714. , PLRAAN 1050-2947Rao, M.V.V.S., Srivastava, S.K., (1992) J. Phys. B, 25, p. 2175. , JPAPEH 0953-4075Hayashi, H., (1981), Institute of Plasma Physics, Nagoya University, Japan, Report No. IPPJ-AM-19, (unpublished)Pack, J.I., Voshall, R.E., Phelps, A.V., (1962) Phys. Rev., 127, p. 2084. , PHRVAO 0031-899XAltshuler, S., (1957) Phys. Rev., 107, p. 114. , PHRVAO 0031-899XBen Arfa, M., Tronc, M., (1988) J. Chim. Phys., 85, p. 889Furlan, M., Hubin-Franskin, M.-J., Delwiche, J., Collin, J.E., (1990) J. Chem. Phys., 92, p. 213. , JCPSA6 0021-9606Alle, D.T., Gulley, R.J., Buckman, S.J., Brunger, M.J., (1992) J. Phys. B, 25, p. 1533. , JPAPEH 0953-4075Harshbarger, W.R., Skerbele, A., Lassettre, E.N., (1971) J. Chem. Phys., 54, p. 3784. , JCPSA6 0021-9606Gulley, R.J., Brunger, M.J., Buckman, S.J., (1992) J. Phys. B: At. Mol. Opt. Phys., 25, p. 2433. , JPAPEH 0953-4075Gianturco, F.A., Jain, A., (1986) Phys. Rep., 143, p. 347. , PRPLCM 0370-1573Pritchard, H.P., Lima, M.A.P., McKoy, V., (1989) Phys. Rev. A, 39, p. 2392. , 0556-2791Gianturco, F., (1991) J. Phys. B: At. Mol. Opt. Phys., 24, p. 4627. , JPAPEH 0953-4075Rescigno, T.N., Lengsfield, B.H., McCurdy, C.W., Parker, S.D., (1992) Phys. Rev. A, 45, p. 7800. , PLRAAN 1050-2947Ribeiro, E.M.S., Machado, L.E., Lee, M.-T., Brescansin, L.M., (2001) Comput. Phys. Commun., 136, p. 117. , CPHCBZ 0010-4655Munjal, H., Baluja, K., (2007) J. Phys. B, 40, p. 1713. , JPAPEH 0953-4075Jain, A.K., Tripathi, A.N., Jain, A., (1989) Phys. Rev. A, 39, p. 1537. , 0556-2791Joshipura, K.N., Vinodkumar, M., Patel, U.M., (2001) J. Phys. B, 34, p. 509. , JPAPEH 0953-4075Yuan, J., Zhang, Z., (1992) Phys. Rev. A, 45, p. 4565. , PLRAAN 1050-2947Limbachiya, C., Vinodkumar, M., Mason, N., (2011) Phys. Rev. A, 83, p. 042708. , PLRAAN 1050-2947Maljković, J.B., Blanco, F., García, G., Milosavljević, A.R., (2012) Nucl. Instrum. Methods, Phys. Res. B, 279, p. 124. , NIMBEU 0168-583XHollis, J.M., Lovas, F.J., Remijian, A., Jewell, P.R., Ilushin, V., Kleiner, I., (2006) Astrophys. J. Lett., 643, p. L25. , AJLEEY 0004-637XBettega, M.H.F., (2010) Phys. Rev. A, 81, p. 062717. , PLRAAN 1050-2947Wang, Y.-F., Tian, S.X., (2012) Phys. Rev. A, 85, p. 012706. , PLRAAN 1050-2947Gupta, D., Naghma, R., Antony, B., (2014) Mol. Phys., 112, p. 1201. , MOPHAM 0026-8976Srivastava, S.K., Chutjian, A., Trajmar, S., (1975) J. Chem. Phys., 63, p. 2659. , JCPSA6 0021-9606Iga, I., Lee, M.T., Homem, M.G.P., Machado, L.E., Brescansin, L.M., (2000) Phys. Rev. A, 61, p. 022708. , PLRAAN 1050-2947Rawat, P., Iga, I., Lee, M.T., Brescansin, L.M., Homem, M.G.P., Machado, L.E., (2003) Phys. Rev. A, 68, p. 052711. , PLRAAN 1050-2947Iga, I., Sanches, I.P., Srivastava, S.K., Mangan, M., (2001) Int. J. Mass Spectrom., 208, p. 159. , IMSPF8 1387-3806Homem, M.G.P., Iga, I., Sugohara, R.T., Sanches, I.P., Lee, M.T., (2011) Rev. Sci. Instrum., 82, p. 013109Jansen, R.H.J., De Heer, F.J., Luyken, H.J., Van Wingerden, B., Blaauw, H.J., (1976) J. Phys. B, 9, p. 185. , JPAMA4 0022-3700Dubois, R.D., Rudd, M.E., (1976) J. Phys. B, 9, p. 2657. , JPAMA4 0022-3700Rawat, P., Homem, M.G.P., Sugohara, R.T., Sanches, I.P., Iga, I., De Souza, G.L.C., Dos Santos, A.S., Lee, M.-T., (2010) J. Phys. B, 43, p. 225202. , JPAPEH 0953-4075Ferraz, J.R., Dos Santos, A.S., De Souza, G.L.C., Zanelato, A.I., Alves, T.R.M., Lee, M.-T., Brescansin, L.M., Machado, L.E., (2013) Phys. Rev. A, 87, p. 032717. , PLRAAN 1050-2947Gianturco, F.A., Lucchese, R.R., Sanna, N., (1995) J. Chem. Phys., 102, p. 5743. , JCPSA6 0021-9606Edmonds, A.R., (1960) Angular Momentum and Quantum Mechanics, , (Princeton University Press, Princeton, NJ)Padial, N.T., Norcross, D.W., (1984) Phys. Rev. A, 29, p. 1742. , 0556-2791Lee, M.-T., Iga, I., Machado, L.E., Brescansin, L.M., Castro E A, Y., Sanches, I.P., De Souza, G.L.C., (2007) J. Electron Spectrosc. Relat. Phenom., 155, p. 14. , JESRAW 0368-2048Staszewska, G., Schwenke, D.W., Truhlar, D.G., (1984) Phys. Rev. A, 29, p. 3078. , 0556-2791Hara, S., (1967) J. Phys. Soc. Jpn., 22, p. 710. , JUPSAU 0031-9015Frisch, M.J., (2004) Gaussian 03, Revision C. 02, , (Gaussian Inc., Wallingford, CT)http://cccbdb.nist.govBurke, P.G., Chandra, N., Gianturco, F.A., (1972) J. Phys. B, 5, p. 2212. , JPAMA4 0022-3700Machado, L.E., Brescansin, L.M., Iga, I., Lee, M.-T., (2005) Eur. Phys. J. D, 33, p. 193. , EPJDF6 1434-6060Brescansin, L.M., Machado, L.E., Lee, M.-T., Cho, H., Park, Y.S., (2008) J. Phys. B, 41, p. 185201. , JPAPEH 0953-4075Itikawa, Y., (1974) At. Data Nucl. Data Tables, 14, p. 1Kim, Y.-K., Rudd, M.E., (1994) Phys. Rev. A, 50, p. 3954. , PLRAAN 1050-2947Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., (1993) J. Comput. Chem., 14, p. 1347. , JCCHDD 0192-8651Khakoo, M.A., Blumer, J., Keane, K., Campbell, C., Silva, H., Lopes, M.C.A., Winstead, C., Bettega, M.H.F., (2008) Phys. Rev. A, 77, p. 042705. , PLRAAN 1050-2947Goumans, T.P.M., Gianturco, F.A., Sebastianelli, F., Baccarelli, I., Rivail, J.L., (2009) J. Chem. Theory Comput., 5, p. 217. , 1549-9618Gallup, G.A., (2013) J. Chem. Phys., 139, p. 104308. , 0021-960
    corecore