455 research outputs found
First-order displacement-based zigzag theories for composite laminates and sandwich structures: a review
The paper gives a critical review and new accomplishments of the displacement based zigzag theories for laminated composite and sandwich structures, with special emphasis to the underlying ideas, relative strengths and weakneses. Some numerical results substantiate the conclusiones
Natural Frequencies of a Cracked Beam Coupled with a Compressible Sloshing Fluid
This article describes studies into the flexural vibration of a cracked cantilevered beam in contact with a non-viscous fluid. The crack has been represented by a mass-less rotational spring, the flexibility of which has been calculated using linear fracture mechanics. The coupled system is subject to undisturbed boundary condition at infinity in the fluid domain. A range of different boundary conditions have been analysed such as both incompressible and compressible fluid, with and without sloshing. Various crack sizes and positions have been considered in order to assess the effect of damage in the fluid-structure interaction problem
An enhancement of the warping shear functions of Refined Zigzag Theory
The paper presents an enhancement in Refined Zigzag Theory (RZT) for the analysis of multilayered composite plates. In standard RZT, the zigzag functions cannot predict the coupling effect of inplane displacements for anisotropic multilayered plates, such as angle-ply laminates. From a computational point of view, this undesirable effect leads to a singular stiffness matrix. In this work, the local kinematic field of RZT is enhanced with the other two zigzag functions that allow the coupling effect. In order to assess
the accuracy of these new zigzag functions for RZT, results obtained from bending of angle-ply laminated plates are compared with the three-dimensional exact elasticity solutions and other plate models used in the open literature. The numerical results highlight that the enhanced zigzag functions extend the range of applicability of RZT to the study of general angle-ply multilayered structures, maintaining the same seven kinematic unknowns of standard RZT
A Family of C0 Quadrilateral Plate Elements Based on the Refined Zigzag Theory for the Analysis of Thin and Thick Laminated Composite and Sandwich Plates
The present work focuses on the formulation and numerical assessment of a family of C0 quadrilateral plate elements based on the refined zigzag theory (RZT). Specifically, four quadrilateral plate elements are developed and numerically tested: The classical bi-linear 4-node element (RZT4), the serendipity 8-node element (RZT8), the virgin 8-node element (RZT8v), and the 4-node anisoparametric constrained element (RZT4c). To assess the relative merits and drawbacks, numerical tests on bending (maximum deflection and stresses) and free vibration analysis of laminated composite and sandwich plates under different boundary conditions and transverse load distributions are performed. Convergences studies with regular and distorted meshes, transverse shear-locking effect for thin and very thin plates are carried out. It is concluded that the bi-linear 4- node element (RZT4) has performances comparable to the other elements in the range of thin plates when reduced integration is adopted but presents extra zero strain energy modes. The serendipity 8-node element (RZT8), the virgin 8-node element (RZT8v), and the 4-node anisoparametric constrained element (RZT4c) show remarkable performance and predictive capabilities for various problems, and transverse shear-locking is greatly relieved, at least for aspect ratio equal to 5 × 10^2, without using any reduced integration scheme. Moreover, RZT4c has well-conditioned element stiffness matrix, contrary to RZT4 using reduced integration strategy, and has the same computational cost of the RZT4 element
C0 beam elements based on the Refined Zigzag Theory for multilayered composite and sandwich laminates
The paper deals with the development and computational assessment of three- and two-node beam finite elements based on the Refined Zigzag Theory (RZT) for the analysis of multilayered composite and sandwich beams. RZT is a recently proposed structural theory that accounts for the stretching, bending, and transverse shear deformations, and which provides substantial improvements over previously developed zigzag and higher-order theories. This new theory is analytically rigorous, variationally consistent, and computationally attractive. The theory is not affected by anomalies of most previous zigzag and higher-order theories, such as the vanishing of transverse shear stress and force at clamped boundaries. In contrast to Timoshenko theory, RZT does not employ shear correction factors to yield accurate results. From the computational mechanics perspective RZT requires C°-continuous shape functions and thus enables the development of efficient displacement-type finite elements. The focus of this paper is to explore several low-order beam finite elements that offer the best compromise between computational efficiency and accuracy. The initial attention is on the choice of shape functions that do not admit shear locking effects in slender beams. For this purpose, anisoparametric (aka interdependent) interpolations are adapted to approximate the four independent kinematic variables that are necessary to model the planar beam deformations. To achieve simple two-node elements, several types of constraint conditions are examined and corresponding deflection shape-functions are derived. It is recognized that the constraint condition requiring a constant variation of the transverse shear force gives rise to a remarkably accurate two-node beam element. The proposed elements and their predictive capabilities are assessed using several elastostatic example problems, where simply supported and cantilevered beams are analyzed over a range of lamination sequences, heterogeneous material properties, and slenderness ratios
A Refined Zigzag Beam Theory for Composite and Sandwich Beams
A new refined theory for laminated composite and sandwich beams that contains the kinematics of the Timoshenko Beam Theory as a proper baseline subset is presented. This variationally consistent theory is derived from the virtual work principle and employs a novel piecewise linear zigzag function that provides a more realistic representation of the deformation states of transverse-shear flexible beams than other similar theories. This new zigzag function is unique in that it vanishes at the top and bottom bounding surfaces of a beam. The formulation does not enforce continuity of the transverse shear stress across the beam s cross-section, yet is robust. Two major shortcomings that are inherent in the previous zigzag theories, shear-force inconsistency and difficulties in simulating clamped boundary conditions, and that have greatly limited the utility of these previous theories are discussed in detail. An approach that has successfully resolved these shortcomings is presented herein. Exact solutions for simply supported and cantilevered beams subjected to static loads are derived and the improved modelling capability of the new zigzag beam theory is demonstrated. In particular, extensive results for thick beams with highly heterogeneous material lay-ups are discussed and compared with corresponding results obtained from elasticity solutions, two other zigzag theories, and high-fidelity finite element analyses. Comparisons with the baseline Timoshenko Beam Theory are also presented. The comparisons clearly show the improved accuracy of the new, refined zigzag theory presented herein over similar existing theories. This new theory can be readily extended to plate and shell structures, and should be useful for obtaining relatively low-cost, accurate estimates of structural response needed to design an important class of high-performance aerospace structures
A novel algorithm for shape parameter selection in radial basis functions collocation method
Many Radial Basis Functions (RBF) contain a free shape parameter that plays an important role for the application of meshless method to the analysis of multilayered composite and sandwich plates. In most papers the authors end up choosing this shape parameter by trial and error or some other ad-hoc means. In this paper a novel algorithm for shape parameter selection, based on a convergence analysis, is presented. The effectiveness of this algorithm is assessed by static analyses of laminated composite and sandwich plate
A homogeneous limit methodology and refinements of computationally efficient zigzag theory for homogeneous, laminated composite, and sandwich plates
The Refined Zigzag Theory (RZT) for homogeneous, laminated composite, and sandwich plates is revisited to offer a fresh insight into its fundamental assumptions and practical possibilities. The theory is introduced from a multiscale formalism starting with the inplane displacement field expressed as a superposition of coarse and fine contributions. The coarse displacement field is that of first-order shear-deformation theory, whereas the fine displacement field has a piecewise-linear zigzag distribution through the thickness. The resulting kinematic field provides a more realistic representation of the deformation states of transverse-shear-flexible plates than other similar theories. The condition of limiting homogeneity of transverse-shear properties is proposed and yields four distinct variants of zigzag functions. Analytic solutions for highly heterogeneous sandwich plates undergoing elastostatic deformations are used to identify the best-performing zigzag functions. Unlike previously used methods, which often result in anomalous conditions and nonphysical solutions, the present theory does not rely on transverse-shear-stress equilibrium constraints. For all material systems, there are no requirements for use of transverse-shear correction factors to yield accurate results. To model homogeneous plates with the full power of zigzag kinematics, infinitesimally small perturbations in the transverse shear properties are derived, thus enabling highly accurate predictions of homogeneous-plate behavior without the use of shear correction factors. The RZT predictive capabilities to model highly heterogeneous sandwich plates are critically assessed, demonstrating its superior efficiency, accuracy, and a wide range of applicability. This theory, which is derived from the virtual work principle, is well-suited for developing computationally efficient, C0 a continuous function of (x1,x2) coordinates whose first-order derivatives are discontinuous along finite element interfaces and is thus appropriate for the analysis and design of high-performance load-bearing aerospace structures
- …