306 research outputs found

    Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson–Gilford Progeria Syndrome

    Get PDF
    Hutchinson–Gilford progeria syndrome (HGPS) is a genetic disorder characterized by premature aging features. Cells from HGPS patients express progerin, a truncated form of Lamin A, which perturbs cellular homeostasis leading to nuclear shape alterations, genome instability, heterochromatin loss, telomere dysfunction and premature entry into cellular senescence. Recently, we reported that telomere dysfunction induces the transcription of telomeric non-coding RNAs (tncRNAs) which control the DNA damage response (DDR) at dysfunctional telomeres. Here we show that progerin-induced telomere dysfunction induces the transcription of tncRNAs. Their functional inhibition by sequence-specific telomeric antisense oligonucleotides (tASOs) prevents full DDR activation and premature cellular senescence in various HGPS cell systems, including HGPS patient fibroblasts. We also show in vivo that tASO treatment significantly enhances skin homeostasis and lifespan in a transgenic HGPS mouse model. In summary, our results demonstrate an important role for telomeric DDR activation in HGPS progeroid detrimental phenotypes in vitro and in vivo

    DNA damage response at telomeres boosts the transcription of SARS-CoV-2 receptor ACE2 during aging

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19), known to be more common in the elderly, who also show more severe symptoms and are at higher risk of hospitalization and death. Here, we show that the expression of the angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 cell receptor, increases during aging in mouse and human lungs. ACE2 expression increases upon telomere shortening or dysfunction in both cultured mammalian cells and in vivo in mice. This increase is controlled at the transcriptional level, and Ace2 promoter activity is DNA damage response (DDR)-dependent. Both pharmacological global DDR inhibition of ATM kinase activity and selective telomeric DDR inhibition by the use of antisense oligonucleotides prevent Ace2 upregulation following telomere damage in cultured cells and in mice. We propose that during aging telomere dysfunction due to telomeric shortening or damage triggers DDR activation and this causes the upregulation of ACE2, the SARS-CoV-2 cell receptor, thus contributing to make the elderly more susceptible to the infection

    TGS1 mediates 2,2,7-trimethyl guanosine capping of the human telomerase RNA to direct telomerase dependent telomere maintenance

    Get PDF
    Pathways that direct the selection of the telomerase-dependent or recombination-based, alternative lengthening of telomere (ALT) maintenance pathway in cancer cells are poorly understood. Using human lung cancer cells and tumor organoids we show that formation of the 2,2,7-trimethylguanosine (TMG) cap structure at the human telomerase RNA 5′ end by the Trimethylguanosine Synthase 1 (TGS1) is central for recruiting telomerase to telomeres and engaging Cajal bodies in telomere maintenance. TGS1 depletion or inhibition by the natural nucleoside sinefungin impairs telomerase recruitment to telomeres leading to Exonuclease 1 mediated generation of telomere 3′ end protrusions that engage in RAD51-dependent, homology directed recombination and the activation of key features of the ALT pathway. This indicates a critical role for 2,2,7-TMG capping of the RNA component of human telomerase (hTR) in enforcing telomerase-dependent telomere maintenance to restrict the formation of telomeric substrates conductive to ALT. Our work introduces a targetable pathway of telomere maintenance that holds relevance for telomere-related diseases such as cancer and aging

    The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress

    Get PDF
    Chromatin organization plays a crucial role in tissue homeostasis. Heterochromatin relaxation and consequent unscheduled mobilization of transposable elements (TEs) are emerging as key contributors of aging and aging-related pathologies, including Alzheimer's disease (AD) and cancer. However, the mechanisms governing heterochromatin maintenance or its relaxation in pathological conditions remain poorly understood. Here we show that PIN1, the only phosphorylation-specific cis/trans prolyl isomerase, whose loss is associated with premature aging and AD, is essential to preserve heterochromatin. We demonstrate that this PIN1 function is conserved from Drosophila to humans and prevents TE mobilization-dependent neurodegeneration and cognitive defects. Mechanistically, PIN1 maintains nuclear type-B Lamin structure and anchoring function for heterochromatin protein 1\u3b1 (HP1\u3b1). This mechanism prevents nuclear envelope alterations and heterochromatin relaxation under mechanical stress, which is a key contributor to aging-related pathologies

    SARS-CoV-2 infection induces DNA damage, through CHK1 degradation and impaired 53BP1 recruitment, and cellular senescence

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although SARS-CoV-2 was reported to alter several cellular pathways, its impact on DNA integrity and the mechanisms involved remain unknown. Here we show that SARS-CoV-2 causes DNA damage and elicits an altered DNA damage response. Mechanistically, SARS-CoV-2 proteins ORF6 and NSP13 cause degradation of the DNA damage response kinase CHK1 through proteasome and autophagy, respectively. CHK1 loss leads to deoxynucleoside triphosphate (dNTP) shortage, causing impaired S-phase progression, DNA damage, pro-inflammatory pathways activation and cellular senescence. Supplementation of deoxynucleosides reduces that. Furthermore, SARS-CoV-2 N-protein impairs 53BP1 focal recruitment by interfering with damage-induced long non-coding RNAs, thus reducing DNA repair. Key observations are recapitulated in SARS-CoV-2-infected mice and patients with COVID-19. We propose that SARS-CoV-2, by boosting ribonucleoside triphosphate levels to promote its replication at the expense of dNTPs and by hijacking damage-induced long non-coding RNAs’ biology, threatens genome integrity and causes altered DNA damage response activation, induction of inflammation and cellular senescence

    Single extreme low dose/low dose rate irradiation causes alteration in lifespan and genome instability in primary human cells

    Get PDF
    To investigate the long-term biological effect of extreme low dose ionising radiation, we irradiated normal human fibroblasts (HFLIII) with carbon ions (290 MeV u−1, 70 keV μm−1) and γ-rays at 1 mGy (total dose) once at a low dose rate (1 mGy 6–8 h−1), and observed the cell growth kinetics up to 5 months by continuous culturing. The growth of carbon-irradiated cells started to slow down considerably sooner than that of non-irradiated cells before reaching senescence. In contrast, cells irradiated with γ-rays under similar conditions did not show significant deviation from the non-irradiated cells. A DNA double strand break (DSB) marker, γ-H2AX foci, and a DSB repair marker, phosphorylated DNA-PKcs foci, increased in number when non-irradiated cells reached several passages before senescence. A single low dose/low dose rate carbon ion exposure further raised the numbers of these markers. Furthermore, the numbers of foci for these two markers were significantly reduced after the cells became fully senescent. Our results indicate that high linear energy transfer (LET) radiation (carbon ions) causes different effects than low LET radiation (γ-rays) even at very low doses and that a single low dose of heavy ion irradiation can affect the stability of the genome many generations after irradiation

    Induction and transmission of oncogene-induced senescence

    Get PDF
    Senescence is a cellular stress response triggered by diverse stressors, including oncogene activation, where it serves as a bona-fide tumour suppressor mechanism. Senescence can be transmitted to neighbouring cells, known as paracrine secondary senescence. Secondary senescence was initially described as a paracrine mechanism, but recent evidence suggests a more complex scenario involving juxtacrine communication between cells. In addition, single-cell studies described differences between primary and secondary senescent end-points, which have thus far not been considered functionally distinct. Here we discuss emerging concepts in senescence transmission and heterogeneity in primary and secondary senescence on a cellular and organ level

    Chromosome Tips Damaged in Anaphase Inhibit Cytokinesis

    Get PDF
    Genome maintenance is ensured by a variety of biochemical sensors and pathways that repair accumulated damage. During mitosis, the mechanisms that sense and resolve DNA damage remain elusive. Studies have demonstrated that damage accumulated on lagging chromosomes can activate the spindle assembly checkpoint. However, there is little known regarding damage to DNA after anaphase onset. In this study, we demonstrate that laser-induced damage to chromosome tips (presumptive telomeres) in anaphase of Potorous tridactylis cells (PtK2) inhibits cytokinesis. In contrast, equivalent irradiation of non-telomeric chromosome regions or control irradiations in either the adjacent cytoplasm or adjacent to chromosome tips near the spindle midzone during anaphase caused no change in the eventual completion of cytokinesis. Damage to only one chromosome tip caused either complete absence of furrow formation, a prolonged delay in furrow formation, or furrow regression. When multiple chromosome tips were irradiated in the same cell, the cytokinesis defects increased, suggesting a potential dose-dependent mechanism. These results suggest a mechanism in which dysfunctional telomeres inhibit mitotic exit

    Telomere maintenance and dysfunction predict recurrence in paediatric ependymoma

    Get PDF
    We have recently described the enzymatic subunit of telomerase (hTERT) as an important prognostic marker for paediatric ependymoma. Because of the lack of good, representative pre-clinical models for ependymoma, we took advantage of our large cohort of ependymoma patients, some with multiple recurrences, to investigate telomere biology in these tumours. Our cohort consisted of 133 ependymomas from 83 paediatric patients and included 31 patients with recurrences. Clinical outcome was measured as overall survival, progression-free survival and response to therapy. In all 133 tumours, hTERT expression correlated with proliferative markers, including MIB-1 index (P<0.0001) and mitotic index (P=0.005), as well as overall tumour grade (P=0.001), but not with other markers of anaplasia. There was no correlation between telomere length and hTERT expression or survival. Surprisingly, prior radiation or chemotherapy neither induced sustained DNA damage nor affected telomere maintenance in recurrent tumours. There was an inverse correlation between hTERT expression and telomere dysfunction as measured by γH2AX expression (P=0.016). Combining γH2AX and hTERT expressions could segregate tumours into three different survival groups (log rank, P<0.0001) such that those patients whose tumours expressed hTERT and showed no evidence of DNA damage had the worst outcome. This study emphasises the importance of telomere biology as a prognostic tool and telomerase inhibition as a therapeutic target for paediatric ependymoma. Furthermore, we have demonstrated that analysing tumours as they progress in vivo is a viable approach to studying tumour biology in humans
    corecore