2,080 research outputs found

    A 7-year follow-up of sacral anterior root stimulation for bladder control in patients with a spinal cord injury: quality of life and users' experiences\ud

    Get PDF
    Study design: Cross-sectional descriptive study.\ud \ud Objectives: To assess long-term effects and quality of life (QoL) of using sacral anterior root stimulation (SARS) in spinal cord injured patients.\ud \ud Setting: Neurosurgical and Urological Departments of a large teaching hospital and a large rehabilitation centre in the Netherlands.\ud \ud Methods: In all, 42 patients with complete spinal cord injury (SCI) implanted between 1987 and 2000 were included. A questionnaire was constructed to determine complications, technical failures and personal experiences of the patients. The Qualiveen questionnaire was used and the outcome was compared with data obtained from a reference group of 400 SCI patients with neurogenic bladder problems not using the bladder controller. The Qualiveen questionnaire measures disease-specific aspects in four domains with respect to limitations, constraints, fears and feelings and general QoL aspects, suitable for use in SCI patients with urinary disorders.\ud \ud Results: The results of 37 patients are presented. Our results with the bladder controller with respect to medical and technical complications and infection rates are similar to the results presented by others. From users' experiences, the most important advantages reported were a decreased infection rate (68%), improved social life (54%) and continence (54%). Comparison of the obtained results of our patient group with the Qualiveen questionnaire with a reference group not using the bladder controller indicates that the specific impact of urinary disorders in the four domains on QoL is reduced and that general QoL is improved.\ud \ud Conclusion: SARS is effective and safe for neurogenic bladder management in patients with complete SCI. Users' experiences are positive. Furthermore, this therapy seems to reduce the effects of urinary-disorder-specific QoL aspects, and to increase the QoL in general\u

    Bone marrow mesenchymal stem cells do not enhance intra-synovial tendon healing despite engraftment and homing to niches within the synovium

    Get PDF
    Intra-synovial tendon injuries display poor healing, which often results in reduced functionality and pain. A lack of effective therapeutic options has led to experimental approaches to augment natural tendon repair with autologous mesenchymal stem cells (MSCs) although the effects of the intra-synovial environment on the distribution, engraftment and functionality of implanted MSCs is not known. This study utilised a novel sheep model which, although in an anatomically different location, more accurately mimics the mechanical and synovial environment of the human rotator cuff, to determine the effects of intra-synovial implantation of MSCs

    Mitochondria are the main source and one of the targets of Pb (lead)-induced oxidative stress in the yeast Saccharomyces cerevisiae

    Get PDF
    The yeast Saccharomyces cerevisiae is a useful model organism for studying lead (Pb) toxicity. Yeast cells of a laboratory S. cerevisiae strain (WT strain) were incubated with Pb concentrations up to 1,000 ÎŒmol/l for 3 h. Cells exposed to Pb lost proliferation capacity without damage to the cell membrane, and they accumulated intracellular superoxide anion (O2 .−) and hydrogen peroxide (H2O2). The involvement of the mitochondrial electron transport chain (ETC) in the generation of reactive oxygen species (ROS) induced by Pb was evaluated. For this purpose, an isogenic derivative ρ0 strain, lacking mitochondrial DNA, was used. The ρ0 strain, without respiratory competence, displayed a lower intracellular ROS accumulation and a higher resistance to Pb compared to the WT strain. The kinetic study of ROS generation in yeast cells exposed to Pb showed that the production of O2 .− precedes the accumulation of H2O2, which is compatible with the leakage of electrons from the mitochondrial ETC. Yeast cells exposed to Pb displayed mutations at the mitochondrial DNA level. This is most likely a consequence of oxidative stress. In conclusion, mitochondria are an important source of Pb-induced ROS and, simultaneously, one of the targets of its toxicity.The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013

    Galaxy Harassment and the Evolution of Clusters of Galaxies

    Get PDF
    Disturbed spiral galaxies with high rates of star formation pervaded clusters of galaxies just a few billion years ago, but nearby clusters exclude spirals in favor of ellipticals. ``Galaxy harassment" (frequent high speed galaxy encounters) drives the morphological transformation of galaxies in clusters, provides fuel for quasars in subluminous hosts and leaves detectable debris arcs. Simulated images of harassed galaxies are strikingly similar to the distorted spirals in clusters at z∌0.4z \sim 0.4 observed by the Hubble Space Telescope.Comment: Submitted to Nature. Latex file, 7 pages, 10 photographs in gif and jpeg format included. 10 compressed postscript figures and text available using anonymous ftp from ftp://ftp-hpcc.astro.washington.edu/pub/hpcc/moore/ (mget *) Also available at http://www-hpcc.astro.washington.edu/papers

    Multiwavelength Observations of Pulsar Wind Nebulae

    Full text link
    The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the central engines, and the long-term fate of the energetic particles produced in these systems. Such observations reveal the presence of jets and wind termination shocks, time-varying compact emission structures, shocked supernova ejecta, and newly formed dust. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples from observations extending from the radio band to very-high-energy gamma-rays that demonstrate our ability to constrain the history and ultimate fate of the energy released in the spin-down of young pulsars.Comment: 20 pages, 11 figures. Invited review to appear in Proc. of the inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space Science series

    A variable absorption feature in the X-ray spectrum of a magnetar

    Get PDF
    Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of AXPs and SGRs are greater than - or at the high end of the range of - those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star's rotational phase. This line is interpreted as a proton cyclotron feature and its energy implies a magnetic field ranging from 2E14 gauss to more than 1E15 gauss.Comment: Nature, 500, 312 (including Supplementary Information

    X-ray emission from isolated neutron stars

    Full text link
    X-ray emission is a common feature of all varieties of isolated neutron stars (INS) and, thanks to the advent of sensitive instruments with good spectroscopic, timing, and imaging capabilities, X-ray observations have become an essential tool in the study of these objects. Non-thermal X-rays from young, energetic radio pulsars have been detected since the beginning of X-ray astronomy, and the long-sought thermal emission from cooling neutron star's surfaces can now be studied in detail in many pulsars spanning different ages, magnetic fields, and, possibly, surface compositions. In addition, other different manifestations of INS have been discovered with X-ray observations. These new classes of high-energy sources, comprising the nearby X-ray Dim Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to several tens of confirmed members, plus many candidates, and allow us to study a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from pulsars and their systems", held in April, 201

    Substantial chest-wall deformity following tissue expansion after radiotherapy

    Get PDF
    We present the case of a 54-year-old woman who underwent a two-stage breast reconstruction with a tissue expander after sustaining a lumpectomy and local radiotherapy for breast cancer. During expansion, the woman developed an abnormal concave deformity of the chest wall. Although respiratory or aesthetic consequences were expected, our patient reported only pain and was satisfied with the end result. Osteoporosis or local recurrence was excluded as predisposing factors, and radiotherapy was considered to be the causal factor in our patient. On the basis of this finding, we advise surgeons to take the risk of chest-wall deformity into consideration when planning a reconstruction with tissue expanders, especially in patients with a history of radiotherapy, and we recommend an alternative reconstructive method in this group of patients

    Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase

    Get PDF
    The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair
    • 

    corecore