5,141 research outputs found

    Torsional rigidity for cylinders with a Brownian fracture

    Get PDF
    We obtain bounds for the expected loss of torsional rigidity of a cylinder ΩL=(L/2,L/2)×ΩR3\Omega_L=(-L/2,L/2) \times \Omega\subset \R^3 of length LL due to a Brownian fracture that starts at a random point in ΩL,\Omega_L, and runs until the first time it exits ΩL\Omega_L. These bounds are expressed in terms of the geometry of the cross-section ΩR2\Omega \subset \R^2. It is shown that if Ω\Omega is a disc with radius RR, then in the limit as LL \rightarrow \infty the expected loss of torsional rigidity equals cR5cR^5 for some c(0,)c\in (0,\infty). We derive bounds for cc in terms of the expected Newtonian capacity of the trace of a Brownian path that starts at the centre of a ball in R3\R^3 with radius 1,1, and runs until the first time it exits this ball.Comment: 18 page

    A quenched large deviation principle in a continuous scenario

    Full text link
    We prove the analogue for continuous space-time of the quenched LDP derived in Birkner, Greven and den Hollander (2010) for discrete space-time. In particular, we consider a random environment given by Brownian increments, cut into pieces according to an independent continuous-time renewal process. We look at the empirical process obtained by recording both the length of and the increments in the successive pieces. For the case where the renewal time distribution has a Lebesgue density with a polynomial tail, we derive the quenched LDP for the empirical process, i.e., the LDP conditional on a typical environment. The rate function is a sum of two specific relative entropies, one for the pieces and one for the concatenation of the pieces. We also obtain a quenched LDP when the tail decays faster than algebraic. The proof uses coarse-graining and truncation arguments, involving various approximations of specific relative entropies that are not quite standard. In a companion paper we show how the quenched LDP and the techniques developed in the present paper can be applied to obtain a variational characterisation of the free energy and the phase transition line for the Brownian copolymer near a selective interface

    Variational characterization of the critical curve for pinning of random polymers

    Get PDF
    In this paper we look at the pinning of a directed polymer by a one-dimensional linear interface carrying random charges. There are two phases, localized and delocalized, depending on the inverse temperature and on the disorder bias. Using quenched and annealed large deviation principles for the empirical process of words drawn from a random letter sequence according to a random renewal process [Birkner, Greven and den Hollander, Probab. Theory Related Fields 148 (2010) 403-456], we derive variational formulas for the quenched, respectively, annealed critical curve separating the two phases. These variational formulas are used to obtain a necessary and sufficient criterion, stated in terms of relative entropies, for the two critical curves to be different at a given inverse temperature, a property referred to as relevance of the disorder. This criterion in turn is used to show that the regimes of relevant and irrelevant disorder are separated by a unique inverse critical temperature. Subsequently, upper and lower bounds are derived for the inverse critical temperature, from which sufficient conditions under which it is strictly positive, respectively, finite are obtained. The former condition is believed to be necessary as well, a problem that we will address in a forthcoming paper. Random pinning has been studied extensively in the literature. The present paper opens up a window with a variational view. Our variational formulas for the quenched and the annealed critical curve are new and provide valuable insight into the nature of the phase transition. Our results on the inverse critical temperature drawn from these variational formulas are not new, but they offer an alternative approach, that is, flexible enough to be extended to other models of random polymers with disorder.Comment: Published in at http://dx.doi.org/10.1214/11-AOP727 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Intermittency in a catalytic random medium

    Get PDF
    In this paper, we study intermittency for the parabolic Anderson equation u/t=κΔu+ξu\partial u/\partial t=\kappa\Delta u+\xi u, where u:Zd×[0,)Ru:\mathbb{Z}^d\times [0,\infty)\to\mathbb{R}, κ\kappa is the diffusion constant, Δ\Delta is the discrete Laplacian and ξ:Zd×[0,)R\xi:\mathbb{Z}^d\times[0,\infty)\to\mathbb {R} is a space-time random medium. We focus on the case where ξ\xi is γ\gamma times the random medium that is obtained by running independent simple random walks with diffusion constant ρ\rho starting from a Poisson random field with intensity ν\nu. Throughout the paper, we assume that κ,γ,ρ,ν(0,)\kappa,\gamma,\rho,\nu\in (0,\infty). The solution of the equation describes the evolution of a ``reactant'' uu under the influence of a ``catalyst'' ξ\xi. We consider the annealed Lyapunov exponents, that is, the exponential growth rates of the successive moments of uu, and show that they display an interesting dependence on the dimension dd and on the parameters κ,γ,ρ,ν\kappa,\gamma,\rho,\nu, with qualitatively different intermittency behavior in d=1,2d=1,2, in d=3d=3 and in d4d\geq4. Special attention is given to the asymptotics of these Lyapunov exponents for κ0\kappa\downarrow0 and κ\kappa \to\infty.Comment: Published at http://dx.doi.org/10.1214/009117906000000467 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Phase diagram for a copolymer in a micro-emulsion

    Full text link
    In this paper we study a model describing a copolymer in a micro-emulsion. The copolymer consists of a random concatenation of hydrophobic and hydrophilic monomers, the micro-emulsion consists of large blocks of oil and water arranged in a percolation-type fashion. The interaction Hamiltonian assigns energy α-\alpha to hydrophobic monomers in oil and energy β-\beta to hydrophilic monomers in water, where α,β\alpha,\beta are parameters that without loss of generality are taken to lie in the cone {(α,β)R2 ⁣:αβ}\{(\alpha,\beta) \in\mathbb{R}^2\colon\,\alpha \geq |\beta|\}. Depending on the values of these parameters, the copolymer either stays close to the oil-water interface (localization) or wanders off into the oil and/or the water (delocalization). Based on an assumption about the strict concavity of the free energy of a copolymer near a linear interface, we derive a variational formula for the quenched free energy per monomer that is column-based, i.e., captures what the copolymer does in columns of different type. We subsequently transform this into a variational formula that is slope-based, i.e., captures what the polymer does as it travels at different slopes, and we use the latter to identify the phase diagram in the (α,β)(\alpha,\beta)-cone. There are two regimes: supercritical (the oil blocks percolate) and subcritical (the oil blocks do not percolate). The supercritical and the subcritical phase diagram each have two localized phases and two delocalized phases, separated by four critical curves meeting at a quadruple critical point. The different phases correspond to the different ways in which the copolymer can move through the micro-emulsion. The analysis of the phase diagram is based on three hypotheses of percolation-type on the blocks. We show that these three hypotheses are plausible, but do not provide a proof.Comment: 100 pages, 16 figures. arXiv admin note: substantial text overlap with arXiv:1204.123

    A general smoothing inequality for disordered polymers

    Get PDF
    This note sharpens the smoothing inequality of Giacomin and Toninelli for disordered polymers. This inequality is shown to be valid for any disorder distribution with locally finite exponential moments, and to provide an asymptotically sharp constant for weak disorder. A key tool in the proof is an estimate that compares the effect on the free energy of tilting, respectively, shifting the disorder distribution. This estimate holds in large generality (way beyond disordered polymers) and is of independent interest.Comment: 14 page

    Heat content and inradius for regions with a Brownian boundary

    Full text link
    In this paper we consider β[0;s]\beta[0; s], Brownian motion of time length s>0s > 0, in mm-dimensional Euclidean space Rm\mathbb R^m and on the mm-dimensional torus Tm\mathbb T^m. We compute the expectation of (i) the heat content at time tt of Rmβ[0;s]\mathbb R^m\setminus \beta[0; s] for fixed ss and m=2,3m = 2,3 in the limit t0t \downarrow 0, when β[0;s]\beta[0; s] is kept at temperature 1 for all t>0t > 0 and Rmβ[0;s]\mathbb R^m\setminus \beta[0; s] has initial temperature 0, and (ii) the inradius of Rmβ[0;s]\mathbb R^m\setminus \beta[0; s] for m=2,3,m = 2,3,\cdots in the limit ss \rightarrow \infty.Comment: 13 page
    corecore