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INTERMITTENCY IN A CATALYTIC RANDOM MEDIUM!

By J. GARTNER AND F. DEN HOLLANDER
Technische Universitdt Berlin and Leiden University

In this paper, we study intermittency for the parabolic Anderson equation
ou/ot =k Au + &u, where u 74 x [0, 00) — R, « is the diffusion constant,
A is the discrete Laplacian and & 74 x [0,00) > Riis a space-time ran-
dom medium. We focus on the case where £ is y times the random medium
that is obtained by running independent simple random walks with diffusion
constant p starting from a Poisson random field with intensity v. Throughout
the paper, we assume that «, y, p, v € (0, 00). The solution of the equation
describes the evolution of a “reactant” # under the influence of a “catalyst” &.

We consider the annealed Lyapunov exponents, that is, the exponential
growth rates of the successive moments of u, and show that they display an
interesting dependence on the dimension d and on the parameters «, y, p, v,
with qualitatively different intermittency behavior in d = 1,2, in d = 3 and
in d > 4. Special attention is given to the asymptotics of these Lyapunov
exponents for k |, 0 and k — oo.

1. Introduction and main results.

1.1. Motivation. The parabolic Anderson equation is the partial differential
equation

(1.1) %u(x,t)zchu(x,t)+§(x,t)u(x,t), xEZd,tEO.

Here, the u-field is R-valued, x € (0, 00) is the diffusion constant and A is the
discrete Laplacian, acting on u as

(1.2) Au(x,t)= Y [u(y,t) —u(x,1)]
Hyy—ExZHd:l

(where || - || is the Euclidean norm), while

(1.3) £={&(x,):x e 2%

is an R-valued random field that evolves with time and drives the equation.
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Equation (1.1) is the parabolic analogue of the Schrédinger equation in a ran-
dom potential. It is a discrete heat equation with the £-field playing the role of a
source or sink. One interpretation, coming from the study of population dynamics,
is that u(x, t) is the average number of particles at site x at time ¢ when particles
perform independent simple random walks at rate «, split into two at rate £(x, )
when £(x,¢) > 0 (source term) and die at rate —&(x,¢) when &(x,t) < O (sink
term). For more background on applications, the reader is referred to the mono-
graph by Carmona and Molchanov ([4], Chapter I).

What makes (1.1) particularly interesting is that the two terms in the right-hand
side compete with each other: the diffusion induced by A tends to make u flat,
while the branching induced by £ tends to make u irregular. Consequently, in the
population dynamics context, there is a competition between particles spreading
out by diffusion and particles clumping around the areas where the sources are
large.

A systematic study of the parabolic Anderson model for time-independent ran-
dom fields & has been carried out by Gértner and Molchanov [18-20], Gértner
and den Hollander [12], Girtner and Konig [14], Girtner, Konig and Molchanov
[16, 17] and Biskup and Konig [1, 2] (for a survey, see Gértner and Konig [15]).
The focus of these papers is on the study of the dominant spatial peaks in the u-
field in the limit of large ¢, in particular, the height, the shape and the location of
these peaks. Both the discrete model on 74 (with i.i.d. &-fields) and the continuous
model on R? (with Gaussian and Poisson-like &-fields) have been investigated in
the quenched setting (i.e., conditioned on &) as well as in the annealed setting (i.e.,
averaged over &).

Most of the theory currently available for time-dependent random fields & is
restricted to the situation where the components of the &-field are uncorrelated
in space and time. Carmona and Molchanov ([4], Chapter III) have obtained an
essentially complete qualitative description of the annealed Lyapunov exponents,
that is, the exponential growth rates of the successive moments of u(0,#) aver-
aged w.r.t. &, for the case where the components of & are independent Brownian
noises. The quenched Lyapunov exponent, that is, the exponential growth rate of
u(0, t) conditioned on &, is harder to analyze. Carmona, Molchanov and Viens [5],
Carmona, Koralov and Molchanov [3] and Cranston, Mountford and Shiga [6]
have computed the asymptotics for « | O of the quenched Lyapunov exponent for
independent Brownian noises, which turns out to be singular. Cranston, Mountford
and Shiga [7] have extended this result to independent Lévy noises. Further refine-
ments for independent Brownian noises are obtained in Greven and den Hollan-
der [21], including sharp bounds on the critical values of x where the annealed
Lyapunov exponents change from positive to zero (resp. the quenched Lyapunov
exponent changes from negative to zero), as well as a description of the equilib-
rium behavior when the quenched Lyapunov exponent is zero. These results are
obtained from variational expressions for the Lyapunov exponents and are valid
for general random walk transition kernels replacing A.
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In the present paper, we will be considering the situation where £ is given by

(1.4) Ex,0) =y ) 8y
3

with y € (0, 00) a coupling constant and
(1.5) {Yr(-):keN}

a collection of independent continuous-time simple random walks with diffusion
constant p € (0, co) starting from a Poisson random field with intensity v € (0, oo)
(the index k is an arbitrary numbering). As initial condition for (1.1), we take, for
simplicity,

(1.6) u-,0)=1.

We are interested in computing the annealed Lyapunov exponents of u and study-
ing their dependence on the parameters « and y, p, v.

The population dynamics interpretation of (1.1) and (1.4)—(1.6) is as follows.
Consider a spatially homogeneous system of two types of particles, A (catalyst)
and B (reactant), performing independent continuous-time simple random walks
such that:

(i) B-particles split into two at a rate that is y times the number of A-particles
present at the same location;
(i1) p and « are the diffusion constants of the A- and B-particles, respectively;
(iii) v and 1 are the initial intensities of the A- and B-particles, respectively.

Then

1.7 u(x,t) = the average number of B-particles at site x at time ¢
’ conditioned on the evolution of the A-particles.

Kesten and Sidoravicius [23] recently investigated this model with the addition of

the following assumption:

(iv) B-particles die at rate 6 € (0, 00).
The latter amounts to the transformation
(1.8) u(x,t) > u(x,)e”?.

We describe their results in Section 1.4.

For a single moving catalyst, thatis, £ (x, ) = ydy () (x), the annealed Lyapunov
exponents have recently been analyzed in Gértner and Heydenreich [11]. The re-
sults are qualitatively different from ours and are, in fact, more closely related to
those of Carmona and Molchanov [4] for white noise potentials.
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1.2. Catalytic and intermittent behavior. Let (-) denote expectation w.r.t. the
&-field. For p € N and ¢ > 0, define

(1.9) Ap(t) = ;10g(e_”’”(u(0, 1PY1p).

This quantity monitors the effect of the randomness in the £-field on the growth
of the pth moment. Indeed, if we would replace £(x,¢) in (1.1) by its average
value (& (x, 1)) = vy [according to (1.4)], then the solution would be u(-, ) = "7,
resulting in A, () =0.

The key quantities of interest in the present paper are the following Lyapunov
exponents:

—~ . 1

hp=lim —log A, ().
(1.10)

hp= lim Ap().

[Note that A, is related to the moment Lyapunov exponent x p= limt_mo% X
log(u(0, 1)?) via the relation A, = Xp/p — vy.] The existence of the limits is not
a priori evident and needs to be established. This will be done in Section 3 for A,
and in Section 4.1 for A ,. From the Feynman—Kac representation for the moments
of the solution of (1.1) and (1.4)—(1.6), given in Proposition 2.1 of Section 2.1, it
will follow that 7 — 1A (1) is strictly positive and strictly increasing on (0, 00).
Hence, A, A, > 0. Further, we have A, (1) > A,_1(¢) by Holder’s inequality ap-
plied to the definition of A, (7). Hence, A, > A, 1. We will see in Section 4.3 that
Ap>0.

Depending on the values of these Lyapunov exponents, we distinguish the fol-
lowing types of behavior.

DEFINITION 1.1. For p € N, we say that the solution is:
(a) strongly p-catalytic if Xp > 0;

(b) weakly p-catalytic if %, = 0.

The solution being strongly catalytic means that the moments of the u-field grow
much faster in the random medium £ than in the average medium (£), at a double-
exponential rate. Weakly catalytic corresponds to a slower rate. Strongly catalytic
behavior comes from an extreme form of clumping in the &-field.

DEFINITION 1.2. For p € N\ {1}, we say that the solution is:

(a) strongly p-intermittent if either A, =ocori, > A, 1;
(b) weakly p-intermittentif A, <ooand A, =1, 1.



INTERMITTENCY ON CATALYSTS 2223

The solution being strongly p-intermittent means that the 1/pth power of the pth
moment of the u-field grows faster than the 1/(p — 1)th power of the (p — 1)th
moment, at an exponential rate. Weakly p-intermittent corresponds to a slower
rate. Strongly intermittent behavior also comes from clumping in the £-field,
but in a less extreme form than for strongly catalytic behavior. Note that strong
p-intermittency implies strong g-intermittency for all ¢ > p (see Gértner and
Molchanov [18]). Also, note that our definition of weakly intermittent includes
the possibility of no separation of the moments, usually called nonintermittent.

In the population dynamics context, both catalytic and intermittent behavior
come from the B-particles clumping around the areas where the A-particles are
clumping. It signals the appearance of rare high peaks in the u-field close to rare
high peaks in the £-field. These peaks dominate the moments of the u-field (for
more details, see [18], [26], Lecture 8, [22], Chapter 8, and [15]).

1.3. Main theorems. Let

(1.11) ok) = Z [1—cos(k-x)], kel-m, n)d.

xezd
lxll=1

For i > 0, define

(1.12) R = — / ax
‘ W= 0myd ) ami n+ o)
and put
1 =0, ifd=1,2,
(1.13) 4= R0) { >0, ifd>3.

Note that R(w) is the Fourier representation of the kernel of the resolvent (1 —
A)~! at 0; R(0) equals the Green function at the origin of simple random walk on
74 jumping at rate 2d, that is, the Markov process generated by A.

The following elementary and well-known fact is needed for Theorem 1.4(i)
below (see Figure 1).

pu(r) pu(r)

0 Td

FIG. 1. r u(r) ford =1, 2, respectively, d > 3.
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LEMMA 1.3. Forr € (0, 00), let
(1.14) u(r) =supSp(A +rép)
denote the supremum of the spectrum of the operator A + rdq in £>(Z%). Then
(1) Sp(A +rdo) =[—4d,0] U {u(r)} with

=0, if0<r=<rq,
(1.15) w(r) { >0, ifr >rg;

(i) for r > rg, u(r) is the unique solution of the equation R(u) = 1/r and is
an eigenvalue corresponding to a strictly positive eigenfunction;

(iii) on (rg,00), r — wu(r)/r is strictly increasing with lim, oo u(r)/r =1;

@iv) on (0, 00), r — w(r) is convex.

Our first theorem establishes the existence of the Lyapunov exponents x prAp
and identifies A .

THEOREM 1.4. Let p e N.

(1) Ifd = 1, then the limit ’):p exists, is finite and equals Xp =pu(py/p).
(i1) Ifd >3 and 0 < py /p < rq, then the limit 1, exists and is finite.
(iii) Ifd =3 and py /p =rq, then the limit A, exists and is infinite.

Note from (1.15) that’):p > 0 when either (a)d = 1,2 or(b)d >3 and py/p > rg.
Consequently, A, = o0 in that regime.

Our second theorem addresses the «-dependence of A, = A,(«) in the regime
where it is finite. In order to state this theorem, we define, for d = 3,

(1.16) P= sup [I(=Ars)"2£2I3 — VR fl3] € (0, 00),
feH (R3)
I fll2=1

where Vp3 and Aps are the continuous (!) gradient and Laplacian, || - [|2 is the
L?-norm, H'(R3) = {f:IR3 —R:f,Vpsf e L?(R3)} and

1
117 a2 = [ dx 2w [ ay Sy

THEOREM 1.5. Let peN,d>3and0 < py/p <rg.

(1) On[0,00), k — A,(k) is strictly decreasing, continuous and convex.
(i1)
py/p

(1.18) lim . () = A (0) = vy — 2212
0”” P Yra—pyio
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Ap(K) Ap(K)
p=3 \ d=3 p=3 d>4
= p=2 \
=1 \ =1 \
'\ ’ \ ’
. = . .

FIG. 2. Qualitative picture of k +— Ap(i). The dotted line represents the asymptotics for d > 4
given by (1.19).

(iif)
1.19 lim kA, (k) = g v\
(1.19) Jim xcdp (k) = e + 1{a=3) TP 5.

Note that the asymptotics as x — oo are the same for all p when d > 4; the cor-
rection term with & is present only when d = 3 (see Figure 2).

Summarizing, we have the following behavior:

COROLLARY 1.6. Let p eN.

(1) The system is strongly p-catalytic if and only if either of the following
holds:
o d=1,2;
e d>3and py/p >rg4.

(i1) The system is strongly p-intermittent if any of the following holds:

d=1,2;

d=3and py/p =ra;

d>3,0< py/p <rqgand k is sufficiently small,
d=3,0< py/p <rzand k is sufficiently large.

1.4. Discussion. Theorems 1.4 and 1.5 show that there is a delicate interplay
between the various parameters in the model.

Catalytic behavior is controlled by y/p, the ratio of the strength and the speed
of the catalyst &, and is sensitive to this ratio only when d > 3. For large ratios,
the system is strongly catalytic; for small ratios, the system is weakly catalytic.
The high peaks in the reactant u develop around those sites where the catalyst &
piles up. The analysis behind Theorem 1.4(i) shows that strongly catalytic behav-
ior corresponds to the high peaks in the u-field being concentrated at single sites,
whereas weakly catalytic plus strongly intermittent behavior corresponds to the
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high peaks being spread out over islands containing several sites (weakly inter-
mittent behavior corresponds to the presence of no relevant high peaks). It follows
from Lemma 1.3 and Theorem 1.4(i) that p — Xp (p) is strictly decreasing in the
strongly catalytic regime. Thus, as the catalyst £ moves faster, it is less effective.
Moreover, lim, wip (p) = py. Note that «, the speed of the reactant u, plays no
role, nor does v, the intensity of the catalyst &.

Intermittency has the following interpretation. Consider the situation where the
system is strongly p-intermittent, that is, A, 1 < A,. Pick any a € (A,—1,4p).
Then, on the one hand, the density of the point process

(1.20) I, ={xeZ ulx, 1) > e}

of high exceedances of the solution u tends to zero exponentially fast as t — oo.
On the other hand,

(1.21) (w(0,)7) ~ (u(0, )P Liyy(0.1)=ex}); t — 00,
and, therefore, by the ergodic theorem,
1 1
(1.22) — > ue, P ~— 3" ux, 0P, t — 00,
Vil xeV, Vil xeV,Nry

provided the centered boxes V; exhaust Z¢ sufficiently fast. For details, we refer
to Girtner and Konig [15], Section 1.3. Thus, p-intermittency means that the pth
moment of the solution is asymptotically “concentrated” on a thin set I'; of high
exceedances (which is expected to consist of “islands” that are located far from
each other).

Intermittent behavior is sensitive to the parameters only when d > 3. Theo-
rem 1.5(ii) shows that for small «, the reactant u has a range of high peaks that
grow at different exponential rates and determine the successive moments, and so
the system is strongly intermittent. For large «, on the other hand, the behavior
depends on the dimension. The large diffusion of the reactant u prevents it from
easily localizing around the high peaks where the catalyst & piles up. As is clear
from Theorem 1.5(iii), in d = 3, the system is strongly intermittent also for large «,
while in d > 4, it may or may not be. To decide this issue, we need finer asymp-
totics than those provided by (1.19). We conjecture the following.

CONJECTURE 1.7. Ind =3, the system is strongly p-intermittent for all k.

CONJECTURE 1.8. For d > dg > 4, the system is weakly p-intermittent for
Kk > ko(p).

As promised at the end of Section 1.1, we discuss the results obtained by Kesten
and Sidoravicius [23].
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1. d =1, 2: For any choice of the parameters, the average number of B-particles
per site tends to infinity at a rate faster than exponential. This result is covered
by our Theorem 1.4(i), because the inclusion of the death rate & shifts A; by —4
[recall (1.8)], but does not affect 3:1, while /):1 > 01in d = 1, 2 for any choice of
the parameters.

Il. d > 3: For y sufficiently small and § sufficiently large, the average number
of B-particles per site tends to zero exponentially fast. This result is covered
by our Theorem 1.4(ii), because small y corresponds to the weakly catalytic
regime for which 0 < A1 < oo so that exponentially fast extinction occurs when
8> Al.

IIl. d > 1: For y sufficiently large, conditioned on the evolution of the A-particles,
there is a phase transition: namely, for small §, the B-particles locally survive,
while for large § they become locally extinct. This result is not linked to our
theorems because we have no information on the quenched Lyapunov exponent.

The main focus of Kesten and Sidoravicius [23] is on survival versus extinction,
while our focus is on moment asymptotics. Their approach does not lead to the
identification of Lyapunov exponents, but it is more robust under an adaptation of
the model than our approach, which is based on the Feynman—Kac representation
in Section 2.1.

For related work on catalytic branching models, focusing in particular on con-
tinuum models with a singular catalyst in a measure-valued context, we refer to
the overview papers by Dawson and Fleischmann [8] and Klenke [24]. Related
references can also be found therein.

1.5. Heuristics behind the asymptotics as k — oco. In this section, we summa-
rize the main steps in the proof of Theorem 1.5(iii) in Sections 5-8. For simplicity,
we restrict to the case p = 1.

We will see that after a time scaling ¢ — ¢ /k, the Feynman—Kac representation
of the first moment (see Section 2.1) attains the form

(1.23) (0, 1/k)) = "V WOEX (exp[”’{—’/ /t w*(X (s), s) dsD,
0

where X is simple random walk on Z? (with generator A) starting at the origin
and w* denotes the solution of the random parabolic equation

5
(1.24) 5w"‘=gAw*Jr%axa)(wrw*)

with zero initial condition. A serious complication is the long-range dependence
of w*(-,¢) on the past X(s), s € [0, t]. For large x, however, w* is small and,
consequently, the w*-term after the Kronecker symbol in the right-hand side of
(1.24) is negligible. Therefore,

(1.25) w*(X(s), 5) ~ %/0 du ppye(X(s) — X (1), s —u),
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where p,/. denotes the transition kernel of simple random walk with diffusion
constant p/k. Hence, the computation of

2
(1.26) Jim iehi(e) = lim lim K—log( VYA 40, 1 /k)))

K—>001—>00 t

reduces to the asymptotic investigation of

2 2 ot t
(1.27) "71ogE5‘<exp[%/0 ds/s dupp/K(X(u)—X(s),u—s)]>

when first letting  — oo and then k¥ — c0.

We split the inner integral into three parts by separately integrating over the time
intervals [s, s + k], [s + ex>, s + K«3] and [s + K«3, ], with € and K being a
small (resp., a large) constant. Through rough bounds, the third term turns out to
be negligible. In d > 4, the same is true for the second term. We then show that a
law of large numbers acts on the first term, that is, for large «, the corresponding
expression in the exponent may be replaced by its expectation. The lower bound is
obvious from Jensen’s inequality, but the proof of the upper bound turns out to be
highly nontrivial. We have

K'2 Vv 2 t S+8K3
T]E(})(<KL2_/(:) dS/ dupojc(X () — X (s),u —S))
S

EK
—vy? fo du iy (0, u).

(1.28)

As k — o0, the integral in the right-hand side converges to 1/r4, the value of the
Green function at 0 associated with A. This yields assertion (1.19) for d > 4 and
the first part of the desired expression for d = 3.

In d = 3, the first and second terms in the exponent of (1.27), as obtained via
the above splitting, may be separated from each other with the help of Holder’s
inequality (with a large exponent for the first factor and an exponent close to one
for the second factor). Hence, for d = 3, it only remains to consider the asymp-
totics of the second term as t — oo and k — oo (in this order). After a Gaussian
approximation of the transition kernel, this leads to the study of

2 t/x? S+KK
ol log IE())( (exp[ / ds /
t +ek

< pa (X - X . 2w -0))

where pg(x,1) = (4wt)~3/2exp[—|lx||?/4t] and X*(-) = X (k2)/k approaches
Brownian motion as ¥ — 00. Next, observe that (p/x)(u — s) stays nearly con-
stant when u and s with u — s > ek vary over time intervals of length §« with

(1.29)
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0 < < &. But, as k — 00, on each such time interval, we may apply the large
deviation principle for the occupation time measure of X*. Then an application of
the Laplace—Varadhan method yields that, for large ¥ and 7 >> &3, the expression
in (1.29) behaves like

2 VVZ t/k? s+Krk P
—Sup{ f dS/ duf Ms(dx)/ uu(dy)pc(y —x, —(u —S))
t () K 0 s+ek R3 R3 K

(1.30)

t/K2
- dsl(us)},
0

where I denotes the large deviation rate function for the occupation time mea-
sure and the supremum is taken over (probability) measure-valued paths 1) on
the time interval [0, 7/ «2]. It turns out that this supremum is attained for a time-
independent path. Hence, (1.30) coincides with

(131) Sllip{‘%z/R3M(dX)/R3M(dy)/€Kdupc(y—x,u)—I(M)}~

Finally, by letting ¢ — 0 and K — o0, we see that the last integral approaches the
Green function and the whole expression becomes

2
vy 1
(1.32) SI;JLP{T/H@ p(dx) /R3 M(dy)m - I(M)}-
Since
(133) ,(M)={||VRsf||§, for u(dx) = f2(x)dx,  feH' R,
00, otherwise,

(1.32) is easily seen to coincide with (vy?/p)%5, where the variational expression
for & is given by (1.16)—(1.17). In this way, we arrive at the second part of the
expression in the right-hand side of (1.19) for p =1 and d = 3, and we are done.

Interestingly, (1.16) is precisely the variational problem that arises in the so-
called polaron model. Here, one takes Brownian motion W on R? with genera-
tor Aps, starting at the origin and, for o > 0, considers the quantity

| (u—s)
@(t;a)— logEo (CXP[ fdsfv |W(Z) W(S)ID

:%mgﬂio (exp[ / dsf d”|W(;()u S)Ij;(s)ID

It was shown by Donsker and Varadhan [10] that
(1.35) O(a) = lim O(; a), o >0,
11— 00

(1.34)

exists and

(1.36) lim 6(x) =47 P.
oa—>00
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The expression obtained by substituting > = « /p and replacing ¢ by pt /i3 in the
second line of (1.34) is qualitatively similar to (1.29). Although the two exponents
are not the same, it turns out that they have the same large deviation behavior for
t — 00 and k — o0. Details can be found in Sections 5 and 7.

While Donsker and Varadhan use large deviations on the level of the process,
we use large deviations on the level of the occupation time measure associated
with the process.

It was shown by Lieb [25] that (1.16) has a unique maximizer modulo transla-
tions and that the centered maximizer is radially symmetric, radially nonincreas-
ing, strictly positive and smooth.

1.6. Future challenges. One challenge is to understand the geometry and lo-
cation of the high peaks in the u-field that determine the Lyapunov exponents in
the weakly catalytic regime. These peaks (which are spread out over islands con-
taining several sites) move and grow with time; the question is how.

Another challenge is to compute the quenched Lyapunov exponent, that is,

1
(1.37) A= lim —logu(0,1),  £-a.s.,
t—00 t

and to study its dependence on the parameters.

Finally, the choice in (1.4) constitutes one of the simplest types of catalyst dy-
namics. What happens for other choices of the £-field, for example, when & (x, ¢) is
y times the occupation number at site x at time ¢ of a system of particles perform-
ing a simple symmetric exclusion process in equilibrium (i.e., particles moving
like symmetric random walks but not being allowed to occupy the same site)? This
extension, which constitutes one of the simplest examples of a catalyst with in-
teraction, will be addressed in Girtner, den Hollander and Maillard [13]. Since
particles cannot pile up in this model, there is no strongly catalytic regime (i.e.,
X,, = 0). However, it turns out that the weakly catalytic regime again exhibits a
delicate interplay of parameters controlling the intermittent behavior.

The asymptotic behavior for large x may be expected to be universal, that is, to
some extent independent of the details of the dynamics of the catalysts. In fact, we
will see evidence of this in [13].

1.7. Outline. We now outline the rest of this paper. In Section 2, we formulate
some preparatory results, including a Feynman—Kac representation for the mo-
ments of the solution of (1.1) under (1.4)—(1.6), a certain concentration estimate,
and the proof of Lemma 1.3. In Section 3, we prove Theorem 1.4(i) for Xp. Sec-
tion 4 contains the proof of Theorems 1.4(ii), (iii) and 1.5(i), (ii) for A, = A, (k)
in three parts: existence, convexity and behavior for small «. Sections 5-8, which
take up over half of the paper, contain the proof of Theorem 1.5(iii): behavior for
large «.
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2. Preparations. Section 2.1 contains a Feynman—Kac representation for the
moments of u(0, ¢) that serves as the starting point of our analysis. Section 2.2
derives a certain concentration estimate that is needed for the proof of Theo-
rem 1.4(i), while Section 2.3 contains the proof of Lemma 1.3.

2.1. Feynman—Kac representation. The formal starting point of our analysis
of (1.1) is the following Feynman—Kac representation for the pth moment of the
u-field.

PROPOSITION 2.1. Forany p €N,
X1, X '
2.1 (u(O,t)p)zep”WEo’f ..... 0 ”(exp|:vy/0 Zw(Xq(s),s)ds:D,
qg=1

where X1, ..., X, are independent simple random walks on Z4 with step rate 2dk
starting from the origin. The expectation is taken with respect to these random
walks and w: 74 x [0, 00) — R is the solution of the Cauchy problem

9 14
aw(x, 1 =pAwx,1)+ V[Z 8Xq(t)(x):|{w(x7 1)+ 1},

qg=1
2.2)
w(-,0)=0.

PROOF. We give the proof for p = 1. Let X,Y be independent copies of
X1, Y1 [recall (1.5)]. By applying the Feynman—Kac formula to (1.1) and (1.6)
and inserting (1.4), we have

u(0,1) =Ef (exp[/ot%‘(X(s), t— s)dsD
= ]E())( (lgexp[y /(; 8y, (1—s5) (X (5)) ds]).

Next, we take the expectation over the &-field. This is done by first taking the
expectation over the trajectories Y, given the starting points Y;(0), and then tak-
ing the expectation over Y;(0) according to a Poisson random field with inten-
sity v:

2.3)

(0, 1)) = <Eé‘ HE%(O) (exp[y /Otéyk(t—s)(X(s))dsD>
Kk

(2.4) =EY <]‘[ (Y (0), t)>

k
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ool
=ng(1‘1 y bebor, )

yeZd neNy

= Eé‘( [] explviv(y, ) — 1}])

yeZd
(where No = N U {0}) with

t
25) w030y =B (exp| [ svio X0 ds ).
The latter is a functional of X and is the solution of the Cauchy problem
ad
(2.6) Ev(x,t)=pAv(x,t)+J/8xm(X)v(x,t), v(-,0) =1

The last expectation in the right-hand side of (2.4) equals E(})( (exp[vX(#)]) with
Z(t) =2 yezafv(y, 1) — 1}. But, from (2.6), we see that

(2.7) %Z(r) =0+ yv(X(1),1), 2(0) =0.
Hence, E(t) =y Jy v(X (s), s) ds. Now, put
(2.8) w(x,t)=v(x,t)—1

to complete the proof. The extension to arbitrary p is straightforwardly achieved
by taking p independent copies of the random walk X (rather than one) and re-
peating the argument. [J

It follows from (1.9) and Proposition 2.1 that

This is the representation we will work with later. Note that
(2.10) W= Wx,,.. X,

thatis, w(-, 7) is to be solved as a function of the trajectories X1, ..., X, up to time
t (and of the parameters p, y, p) and A () is to be calculated after insertion of
the solution into the Feynman—Kac representation (2.9). Thus, the study of A ()
amounts to carrying out a large deviation analysis for a time-inhomogeneous func-
tional of p random walks having long-time correlations.

Note that

(2.11) w(x,t) >0 Verd, t >0,

as can be seen from (2.2). Hence, t > t A ,(t) is strictly positive and strictly in-
creasing on (0, 00), as was claimed in Section 1.2.
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2.2. Concentration estimate. The following estimate will be needed later on.
It shows that the solution of (2.2) is maximal when X1, ..., X, stay at the origin.

PROPOSITION 2.2.  Forany p € Nand X1, ..., X,
(2.12) w(x, 1) <w(,1) VxeZl t>0,

where w: 74 x [0, 00) — R is the solution of the Cauchy problem

2.13) %zi)(x, 1) = pAW(x, 1) + pydo){w(x, 1)+ 1},  w(-,0)=0.

PROOF. Recall (1.11). Abbreviate § dk = (27) ™ f,_, . a dk. Let

(2.14) pp(x,1) = fdk e PIPW mikx e 7d >0,

denote the Fourier representation of the transition kernel associated with p A. From
this representation, we see that

(2.15) max p,(x,1) = p,(0,1) Vi >0.
xeZ4

The solution of (2.2) has the (implicit) representation

p t
(2.16) w(x,t):yZ/Oa’spp(x—Xq(s),t—s){w(Xq(s),s)—i—1}.
qg=1

Abbreviate
1 p
(2.17) () = ; Z (X, (), 1).
We first prove that
(2.18) () <w(0,1) Vt>0.

To that end, take x = X, (¢),r =1, ..., p, in (2.16), sum over r and use (2.15), to
obtain

t
(2.19) 7(t) SPV/O ds pp(0,t —s){7(s) + 1}.
Define
(2.20) h(t) = pypp(0.1) = 0.

Then (2.19) can be rewritten as

2.21) T<hx{H+1).
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Next, put

(2.22) n(t) =w(,1).

Then the same formulas with X(-), ..., X,(-) =0 yield the relation
(2.23) n=hx{n+1}.

Thus, it remains to be shown that (2.21) and (2.23) imply (2.18), that is,
(2.24) n=1.

This is achieved as follows.
Let § = — 7. Then (2.21) and (2.23) give

(2.25) 8> hxé.

Iteration gives 6 > A™ % § and so, to prove (2.24), it suffices to show that h*"
tends to zero as n — oo, uniformly on compact time intervals. To that end, put
hr =max;¢o,77h (). Then

t

(2.26) 0 <h* (1) < hT/ " D(syds,  tel0,T],

0
which, when iterated, gives

n—1
2.27 0<h™@t)<hp—, t€[0,T].
(2.27) <HO W, €[0,7]
Letting n — 0o, we obtain the claimed assertion.
Finally, put
(2.28) n(t) = max w(x,1t), t>0.
xezd

Then (2.15)—(2.17) and (2.24) give
(2.29) n<hx{n+1} <h=x{n+1}.

Now, use (2.23) to get
(2.30) n=<mn,
which, via (2.28), implies (2.12), as desired. [
PROPOSITION 2.3.  Forany p € N, t — w(0, t) is nondecreasing and w(0) =
lim;—, oo w(0, t) satisfies

i py/p
00, otherwise.

if0<ﬂ<rd,
0
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PROOF. Returning to (2.22) and (2.23), and recalling (2.20), we have

(2.32) w(0,1) = py /Ot ds p,(0,5){W(0,1 — 5) + 1}

From this, we see that r — w(0, #) is nondecreasing. Using this fact in (2.32), we
have

_ o0 . pr 1l _
(2.33) w(0,1) < py (/ dsp, (0, S)>{w(0, N+ 1} =——{w(,1)+ 1}
0 P Fa
[recall (1.13)] and, hence,
(2.34) w(0, t) <rhs(2.31).

Taking the limit # — oo in (2.32) and using monotone convergence, we get

- o . py 1
@35 00 =py( [ dups©.0) 150 + 1) =X 2150 + 1),
which implies the truth of the claimed assertion. [J

2.3. Proof of Lemma 1.3. The proof is elementary.

(1)—(i) For r € (0, 00), let #£ = A + r&p. This is a self-adjoint operator on
02(Z9). Let 9(k) = Y-, cza €F*v(x) denote the Fourier transform of v € £2(Z).
The Fourier transform of # is the operator on L2([—7, 1)9) given by

(2.36) (FD) (k) = —@(k)D(k) + r 7§ o) dl,
where we recall (1.11). Since Sp(#) = Sp(J?), (1.14) reads as

(2.37) w(r) = sup Sp(H).

The spectrum of F consists of those A € R for which A — # is not invertible.
Consider, therefore, the equation

(2.38) A—F)f=g.
Substituting (2.36) into (2.38), we get
(2.39) (A+¢)f—ry§f=g.

Now, the range of @ is the interval [0, 4d]. Thus, if A € [—4d, 0], then there exists
gE€ L?([—7, m)%) for which (2.39), and hence (2.38), has no solution, that is,

(2.40) Sp(#) D [—4d, 0].
Next, assume that A > 0. Divide (2.38) by A + ¢ and integrate to get

(2.41) - rR(x)]7§f — f %@
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with R as defined in (1.12). If r R(A) = 1, then there is, again, no solution, that is,
(2.42) rRAM) =1 = 1eSp(H.

If, on the other hand, r R(X) # 1, then (2.41) yields a unique solution

(2.43) —L<+ : f g)
‘ I=i T 1 e P ars)

which is in L2([—m, 7)%), that is,

(2.44) rR(AM) #1 = 1 ¢&Sp(H).

The same argument shows that
(2.45) (—00, —4d) N Sp(Jf) =

Combining (2.40), (2.42), (2.44) and (2.45), and noting that » R(A) = 1 has a
unique solution A = w(r) > 0 if and only if r > r;, we obtain assertions (i) and
(i1). Note that if r > ry, then

(2.46) e=r(ur)—A)" '8

is a positive eigenfunction of # corresponding to the eigenvalue 1 (r), normalized
by e(0) =1 (rather than by |le||>» =1 with || - ||> the £%-norm).
(iii) From (1.12), we have

7
(2.47) pRGw = § L
w+o
Differentiate this relation w.r.t. u to obtain
7
(2.48) RGO = "5 >0
(n+9)?

Next, differentiate the relation r R(u(r)) = 1 w.r.t. r and use the fact that R" <0
to obtain

R(u(r))

From (2.48) and (2.49), we get
(2.50) [ () /r) =) R(u(r)] = LR (' (r) > 0,

which proves the first part of assertion (iii). The second part of assertion (iii) fol-
lows from the estimate

1
2.51 0<——R(n= ==
@31) <u ) 7§M(M+§0) 7§¢

after letting u — oo, corresponding to r — 00.
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(iv) Differentiating (2.49) w.r.t. r, we obtain

(2.52) M//(r) _ R(u(r))

= WB[R'(M(F))]2 — R(n(r)R" (u(r))}.

Using the integral representations of R, R’, R” obtained from (2.47), we find that
R > 0 and R’ < 0 and, by an application of the Cauchy—Schwarz inequality, that
the term between braces is < 0. Hence u”(r) > 0.

An alternative way of seeing (iii) and (iv) is via the Rayleigh—Ritz formula,

(2.53) w(ry= sup 1rfO)—% > [f&x)—FOI}-
fee2(zd) x,yezd
I fll2=1 lx—yll=1

Indeed, this formula shows that 7 — () is a supremum of linear functions and is
therefore convex. Moreover, it shows that r — @ (r)/r is nondecreasing and, since
the supremum is attained when r > ry, it, in fact, gives that r = w(r)/r is strictly
increasing on (rg, 00) (and tends to 1 as r — 00).

3. Proof of Theorem 1.4(i). The proof uses spectral analysis.

3.1. Upper and lower bounds. Let # = pA + pydo. This is a self-adjoint
operator on 02(74). Equation (2.13) reads as

(3.1) %w:&emw(so, w(-,0)=0.
By (1.14),
(3.2) sup Sp(H) = pu(py/p).

Suppose first that pu(py/p) > 0. Then, by Lemma 1.3, this is an eigenvalue
of # corresponding to a strictly positive eigenfunction e € ¢2(Z¢) (normalized as
llell2 = 1). From (2.9) and Proposition 2.2, we have

1 rt
—2dk + vy—/ w(0,s)ds < Ap(t; k)
33) t Jo
G. L
Svy—f w(0,s)ds,
tJo
where we use the fact that
(3.4) P,

.....

From (3.1), we have

t
(3.5) w(-,t)=pyf0 ds(e"9%50)().
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Moreover, from the spectral representation of e/ ~9)% and (3.2), we have
(3.6) eU=IPIPYP) (o 50} < <e(t—S)=%’50’ 8o) < et=9)pu(py/p) ||50”%'

Combining (3.3), (3.5) and (3.6), we arrive at

~ o1
(3.7) Ap =t1ggozlogAp(t; k) = pu(py/p).

Next suppose that pu(py/p) = 0. Then the upper bound in (3.6) remains valid
[despite the fact that no eigenfunction e € 27 with eigenvalue 0 may exist] and
so the limit equals zero.

4. Proofs of Theorems 1.4(ii)—(iii) and 1.5(i)—(ii). In Section 4.1, we prove
Theorem 1.4(ii)—(iii) and in Sections 4.2-4.3 we prove Theorem 1.5(i)—(ii).

4.1. Existence of Ap. We already know that A, exists and is infinite in the
strongly catalytic regime, that is, when d = 1,2 or d > 3, py/p > rg; see the
remarks below Theorem 1.4(i). At the end of Section 4.3, we will see that the
same is true at the boundary of the weakly catalytic regime, that is, when d > 3,
pY/p =rq, as is claimed in Theorem 1.4(iii). The following lemma proves Theo-
rem 1.4(ii):

LEMMA 4.1. Letd >3 and p € N.If0 < py/p <rg, then the limit A, exists
and is finite.

PROOF. Fix d > 3 and p € N and return to (2.3). We have

(4.1) w(©,0)= Y S:(1)
xezd
with
x t
(4.2) Se(t) =E§ <exp[ A E(X(s),t — s)ds]éx (X(t))).
Hence,
r p
<u<0,r)f’>=< > Sx(r>} >
LxeZd
— p—1
(4.3) §< > S0 >+p< > Sy (t)[ > Sx(t):| >
xezd

xl¢Qtlogt

> S

Lx€Oslogs

:|17
Lx€Oslogs
:|17

Il
/\

>+p > > <1£[qu<r>>,

x1¢0tlogt X7,..., xPeZ" q=1
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where Q;ogr = [—1logt, tlogt]d nzd. By Jensen’s inequality, the first term in
the right-hand side of (4.3) is bounded above by

|Q,1ogt|f’—1< > [Sx(r>]P>

ertlogt

(4.4) =eP”V’|Qtlog,|P—‘

X€Q0:logr
where the last line follows the calculation in the proof of Proposition 2.1. The
second term in the right-hand side of (4.3) is bounded above by
(4.5) peP7 OB (X (1) ¢ Ortogi),

where we use the fact that w(x, t) < w(0, ¢) < w(0) by Propositions 2.2 and 2.3,
with w(0) < oo strictly inside the weakly p-catalytic regime considered here.
Now, define

vezd pt o O
(4.6)

p
x |1 ax(xq(z))).

g=1

Since the probability in (4.5) is superexponentially small (SES) in 7, we see that a
comparison of (2.9) and (4.6) yields the sandwich [combine (1.9) and (4.3)—(4.5)]

A1) < Ap(0)

4.7 |

=< E 10g(|Qtlogt|p€ptA”(Z) + SES),
so that
4.8) hm [ p()—A (t)] =

To prove existence of A, it therefore suffices to prove existence of
49) hp = lim A, (),
after which we conclude that A, = X ,.

The proof of existence of (4.9) is achieved as follows. Write

(4.10) w(x,$) =wWx,[0.],.... X, [0,¢] (X, $), s €10, 1],
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to exhibit the dependence of w on the p trajectories. We have, for any s, > 0,
= Wx,[0,5],....X,[0,s](X, 1),
foru € [0, 5],
> WX [s,5+],.... X pls,5+£] (X, U — $),
foru € [s, s +t].
Here, the inequality arises by resetting the initial condition to = 0 at time s and
using the fact that the solution of (2.2) is monotone in the initial condition. It
follows from (4.6) and (4.11) that
ps+1A (s +1)

> max log
x,yezZd

(4.11)  wx,[0,5411,.... X, [0,s+¢] (X, )

.....

P )4
% 1185 (X)) [T ¢ (Xg (s + r>))

qg=1 g=1
P s
> max {logEy""o"" [ exp vVZ/ WX [0,5].....X 10,51 (Xg (), ) dut
x,yezd e g=1 0

14
X l_[ Sy (Xq (S))>

g=1

.....

p
x |1 8x_y<xq(r>>>}

q=1
= psA,(s) + prA, (1),

where we use the fact that wy+X1[0’,],“,,y+xp[0,,](y + -, u) does not depend on y.
Thus, 7 — 1A ,(7) is superadditive and so the limit in (4.9) indeed exists. It follows
from Proposition 2.3 and (3.3) that A, < pvyw(0), proving that 1, is finite strictly
inside the weakly p-catalytic regime. [J

4.2. Convexity in k. We will write down a formal expansion of the expectation
in the right-hand side of (2.9). From this expansion, it will immediately follow that
A p(t) is a convex function of « for any p,  and y, p, v. After that, we can pass
to the limit # — oo to conclude that A, = lim,;_, o, A ,(?) is also a convex function
of k.
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PROPOSITION 4.2. Forany p € N,
Xiver
EO,%..,O (exp|:vy/ w(X4(s),5)d :|>

Sor(ff ) £ EP=

m=1rp=11[,=1

(H I fw*l e § dkw)

18=1
(4.13) ¢ l

r no n
X eXp| —p Z Z(ua,ﬂ—l - ua,ﬁ)(o\(ka,ﬁ):| (H

L a=18=1

2)

a=ly=lryy

X exXp —KZ/ dvgo(Z Zkaﬂ Far.pq 110,10, 51(V)

a=1pg=1

- 8ra,f5—1 vql[os“a,ﬂ—l] (v)})j| ’

with the convention that s) =1, rq 0 =rq and ug o = Sq, @ € N.

PROOF. By Taylor expansion we have

@14) Egt (exp|:vy / w(X,(s), s)d D

~>onr (1] /d) (1132wt

m=1qg=1

with s9 = ¢. To compute the n-point correlation under the integral, we return to
(2.16). By substituting (2.14) into (2.16) and iterating the resulting equation, we
obtain the expansion

w(X, (1), 1) = ;y (]‘[/ duﬂfd@)

(4.15) X exp|:—,0 > (up-1 — uﬁ)a(kﬂ)}
B=1

p=1

l p l
X (]‘[ > ) exp{i Y kg [Xry(up) — Xry_, (up—1)]
y:lryzl
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with ug =t and rg = r. This expansion is convergent because the summand is
bounded above by (ytp)l/l!. Using (4.15) in (4.14), we obtain

w(Xq (sm), Sm))

(1132 3 Yoo (I [ e f i)

m=1r,=110,=1 a=1 =1

(4.16)
n la n la p
x exp[—p >0 (e g —ua,m(ka,ﬂ)}(]"[ I1 > )
a=1 =1 a=ly=lry,=1
Xioo,
X IE0 ,,,,, (exp{ Z Z ko B ra_,g (ua,ﬂ) - erg_l (Wx,ﬂl)]])
a=1p=1

with 740 =7y and uy,0 = 5o, ¢ = 1,...,n. To complete the proof, it therefore

suffices to show that

E(’; ......... (exp{ Z Z ko, - ra’ﬁ(ua,,g) — Xra,ﬁl(”a,ﬁ—l)]D

a=1p=1

p t
“4.17) :eXp|:—KZ/0 dU(’ﬁ( ka?ﬁ{(sra’ﬁ,q]l[o?ua’ﬁ](v)
o

- 8ra.;3—1 ,qﬂ[O,Ma,ﬂ—ll(U) }) :| .

By writing

Xra’f; (ua,ﬂ) - Xra ﬁ_l(uo{,ﬁ—l)

(4.18) = Z a8 qX (U, ,3) ra ﬂfl,qu(”mﬁ—l)}

p t
= Z / ra, ﬂ,qﬂ[O,ua,fs](v) - 8”&,/371"]]]‘[0»“(1,/371](1))} dXq(v)
g=1

and noting that the increments d X, (v), g =1, ..., p, are independent, we see that
(4.17) is a special case of the relation

R, <exp[i /Otf(v) -qu(v)D =exp[—lc /Ot @(f(v))dv},

g=1,...,p,

(4.19)
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which holds for any f:R¢ — R that is piecewise continuous and has bounded
jumps. To see why (4.19) is true, we note that

(4.20) By (explik - X, (O = Y ¢ pe(x, 1)

xeZd
with p, denoting the transition kernel associated with « A. It follows from (2.14)
that

“.21) g (explik - X, (1)]) = exp[—kt@(k)].

From this relation, together with the fact that the increments of the process X
over disjoint time intervals are independent, we obtain (4.19). [

The expression in Proposition 4.2 is complicated, but the relevant point is that
the right-hand side is a linear combination with nonnegative coefficients of func-
tions that are negative exponentials in «. Such a quantity is log-convex in x, which
tells us that A ,(7) is convex in « [recall (2.9)]. Consequently, A, = lim; oo A (1)
is also convex in k.

4.3. Small k. 1f k =0, then X1, ..., X, stay at the origin and so, from (2.9)
and (2.12), we have that

1 t
(4.22) Ap(2;0) =vy;/0 w(0, s)ds.

Since ¢t — w(0, t) is nondecreasing by Proposition 2.3, we have
(4.23) Ap(0) =vyw(0)

with w(0) = lim; o w(0, t) given by (2.31). This proves the second equality in
(1.18) in Theorem 1.5(ii). It follows from (3.3) and (4.22) that

(4.24) 2p(0) = 2dic < Ap(Kc) < A p(0).

Hence, k — A, («) is continuous at 0 and bounded on [0, 00). This proves the first
equality in (1.18) in Theorem 1.5(ii). Since k — A, (k) is convex, as was shown
in Section 4.2, it must be continuous and nonincreasing on [0, co). Since it tends
to zero like 1/k as k — oo [as stated in Theorem 1.5(iii), which will be proven in
Sections 5-8], it must be strictly positive and strictly decreasing on [0, c0). Thus,
we have proven Theorem 1.5(i).

By Proposition 2.3 and (4.23), A,(0) = oo when d > 3, py/p = ry. It therefore
follows from (4.24) that A, (k) = oo. Thus, we have proven Theorem 1.4(iii). The
proof of Theorem 1.4(ii) was already achieved with Lemma 4.1.

5. Proof of Theorem 1.5(iii). The proof is long and technical. In Section 5.1,
we introduce an appropriate scaling in «. In Section 5.2, we formulate seven key
lemmas that are the main ingredients of the proof. In Section 5.3, we prove The-
orem 1.5(iii) subject to these lemmas. The proofs of the lemmas are deferred to
Sections 6-8.
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5.1. Scaling. To exhibit the dependence on the parameters, we henceforth
write

(51) Ap(T)=Ap(TaK9 %,O,V),
where A, (T) is defined in (1.9). Substituting (2.16) into (2.9), we find that
A]J(T; K, V» p’ U)

1 XK, XK & (T T
(5.2) = —logE, |, "|exp|vy Z / dsf dt
plT — = 0 s

k,[=1
X pp(X[ (1) — X5 (), t —s)(1 + w(Xf(s), s)):|>

In this formula, X7,..., X; are independent simple random walks on 74 with
diffusion constant « (i.e., step rate 2dk), the expectation is over these random
walks starting at 0, p, is the transition kernel associated with pA and w denotes
the solution of the Cauchy problem

ow P
(5.3) E:pAw-ﬁ-y Y Sxr | +w), w(-,0)=0.
k=1
In Sections 2—4, the upper index « was suppressed. We introduce it here because
we now want to remove the dependence of the random walks on «. Indeed, in (5.2),
we perform a time scaling ¢ — ¢/« in order to obtain

5.4 Ap(T5k,y,0,v)=kANpT; 1,y /K, p/k, V).
Hence,

(5.5) Ap(T5k,y,p,v) =k AN, (kT3 K, 7, p, V),
where

AL (T5k,y,p,v)

1 X1, X vy? & T r
5.6) = —IlogE, "7 —_ f d/ dt
56 = sl (o] 5 [

k=1
X ppic(Xi(t) — Xi(s), t — s)(1 + w*(Xi(s), S))]>,

X1,..., X, are simple random walks on 74 with diffusion constant 1 and w*
solves

dw* p
CON =£Aw*+Z<Zaxk(,))<1+w*>, w*(,0) =0,
t K K k=1
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and satisfies w* > 0.
The Lyapunov exponents in Theorem 1.4(ii)—(iii) are [recall (1.10)]

(5.8) Ap=2Ap(k, y,p,v):TILmooAp(T;K, Y, 0, V).
Because of (5.5), these are related to the rescaled Lyapunov exponents
(5.9 A0y, pv) = Tli_)mooA;(T; K,Y,p0,V)

via

(5.10) Ap(k, y,,o,v):;c)\;(/c, Y, 0, V).

Also, note that (5.4) leads to the scaling

(5.1 Ap(c, vy, p,v) =kAp(l, v /K, p/K, V).

We will frequently suppress the parameters y, p, v from the notation and write
Ap(T; ), A”;,(T; k) and A, (k), )\;(K).

5.2. Main ingredients of the proof. The assertion of Theorem 1.5(iii) may now
be restated as follows:

THEOREM 5.1. Letd >3, p e Nand
py

(5.12) 0<—/— <rg.
0
(1) Ford >4,
2
NN
(5.13) Jim 250 = =~
(i1) Ford =3,
2 2 2
(5.14) lim %A% () = —— + (ip> P
K—>0Q r3 10

with P the constant defined in (1.16).

The proof of Theorem 5.1 is based on seven lemmas, which are stated below
and which provide lower and upper bounds for various parts contributing to (5.6).
The guiding idea behind these lemmas is that the expectation in (5.6) can be moved
to the exponential in the limit as k — oo uniformly in 7', except for the part that
produces the constant 42, which needs a large deviation analysis. This idea, though
simple, is technically rather involved.

In the statement of the lemmas below, the following three auxiliary parameters
appear:

(5.15) 0<a< oo, O<e< K <o0.
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These parameters are needed to separate various time regimes. Four lemmas in-
volve one random walk (X), one lemma involves two random walks (X, Y) and
two lemmas involve p random walks (X1, ..., X,). We use upper indices — and
+ for liminf and lim sup, respectively.

5.2.1. Lower bound. The first lemma concerns the “diagonal term” (0 <
t —s <ak3). Let

dlag(T a,x)
(5.16)
1 ¥ 1))/2 T s+ar
:—?logEO (exp[—K—Z/O dsﬁ dtpp/K(X(t)—X(s),t—s)D
and
(5.17) dlag(a K)= hmmfAdlag(T; a, k).

LEMMA 5.2 (Lower bound for the diagonal term). For d > 3,

2
(5.18) liminfx?iz,,(@.6) > 2~ V0<a<oo.

rq

The second lemma concerns the “variational term” (8/(3 <t—s<K K3), which
involves p random walks and which will turn out to be responsible for the second
term in the right-hand side of (5.14). Let

Avar(T, 87 K5 K)

.....

1 X1,...,X
(5.19) :p—TlogIEO 0 exp| —5-

s+K«3
s [as
k=1 s+ex3

X ppic(Xi(t) — Xi(s), t — S)i|>

and

(5.20) (& K, K)—hmlanvar(T &, K, k).

var

LEMMA 5.3 (Lower bound for the variational term). For d = 3,

liminf 2 Aar (&, K, k) > Pp(e, Ky, p,V)

K—> 00

(5.21)
VO0<e< K < o0,
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where
Pple, K5y, p0,v)
2 Kp
(5.22) = s | op [ [dy o) [T
feH (R3) 1Y R3 R3 &p
I1fll2=1

X PG — yut) — ||VR3f||%]

with pg(x,t) = (4mr)—3/2 exp[—||x||2/4t] the Gaussian transition kernel associ-
ated with Aps.

5.2.2. Upper bound. The third lemma is the counterpart of Lemma 5.2. Let

A;{iag(T;a,K)

(5.23)
1 X vy2 T s+ax3
=?logE0 (exp[ﬁfo dsfs dtpp/K(X(t)—X(s),t—s)})
and
(5.24) ,\;ag(a, k) = limsup A:{iag(T; a, ).

T—o00

LEMMA 5.4 (Upper bound for the diagonal term).

(i) Ford =4,
. 2, 4 VV2
(5.25) lim sup Adiag(a, K) < — V0 <a < oo.
K—>00 rqd
(i) Ford =3,
. . 2 VV2
(5.26) lim sup lim sup « )‘:ﬁa (a, k) < —.
all K—>00 J r3

The fourth lemma is the counterpart of Lemma 5.3. Let

(5.27) Ado(e, K, i) =limsup Avar(T; €, K, ).

T— 00

LEMMA 5.5 (Upper bound for the variational term).
(1) Ford >4,
(5.28) lim x22f,
K— 00

var

(e,K,k)=0 VO<e < K <o0.
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(i) Ford =3,
(5.29) limsupi®rf (e, K, k) < Pp(e, K5y, p,v) Y0<e<K <o0.
K—> 00

Three more lemmas deal with the upper bound, all of which turn out to involve
terms that are negligible in the limit as k — oco. The fifth lemma concerns the
“off-diagonal” term ( — s > ax?). Let

Aofi(T; a, k)

(5.30)
1

log EX vy? s [T 4 X)) — X

=— - t 1) — -

T 08 0 (exp[ K2 /() s«£+ax3 Pp/lc( ( ) (S) S)i|)
and

(5.31) Ai(a, k) = limsup Aofe(T'; a, k).

T— o0

LEMMA 5.6 (Upper bound for the off-diagonal term).

(i) Ford >4,
(5.32) lim «*A%e(a,k)=0 V0 <a <oo.
K—> 00
(i) Ford =3,
(5.33) lim limsupk?Afy(a, k) =0.

a—>0 500

The sixth lemma concerns the “mixed” term and involves two random walks.
Let

Anmix(T; a, k)

(5.34)
2 T s+ar3
1 oo EX-Y vy
=7 ogEyy (exp ), ds i dt ppsc(Y () — X(s),1— )
and
(5.35) At (@, k) =limsup Amix(T; a, k).

T— o0

LEMMA 5.7 (Upper bound for the mixed term).

(1) Ford >4,
(5.36) lim «?2f. (00, k) =0.
K—> 00
(i1) Ford =3,

. 24+ . .
(5.37) Kll)ngoic Amix(@, k) =0 V0 < a < ag with ag sufficiently small.
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The seventh lemma deals with a term that will be needed to treat the w*-
remainder in (5.6). Let

Avem(T'; 1)
3

1 T 00
(538) = 1ogEg‘<exp[%/o ds(fs dtpp/K(X(t)—X(s),t—s))

T
X (/:dupp/,((X(s) —X),s —u)>:|>

(5.39) AL () =limsup Agem (T'; ).

T—o00

and

[Note the extra factor y /k in the exponent in the right-hand side of (5.38) com-
pared to the previous definitions.]

LEMMA 5.8 (Upper bound for the w*-remainder). Ford > 3,

(5.40) lim k%A% (k) =0.
K—> 00

rem
The proofs of Lemmas 5.2-5.8 are deferred to Sections 6-8.

5.3. Proof of Theorem 5.1. Recall that the solution of (5.7) admits the (im-
plicit) integral representation [compare with (2.16)]

P ps
(5.41) w*(x,s)= %Z/O du ppic(x — X1 (), s —u)(1 4+ w* (X (), u)).
=1

Moreover, in the weakly catalytic regime given by (5.12), we have

542 wins) <O =C = PP vrezd 5>0

ra —py/p

[recall (2.12), (2.16) and (2.31)]. Note that C* does not depend on «.
For d > 3 and a > 0, abbreviate

(5.43) G,.0) = /Oodtp(O, 1).

We have Go(0) = R(0) = 1/rg [recall (1.13)] and there exists a constant ¢y > 0

such that
Cd
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5.3.1. Lower bound. Removing from (5.6) the terms with w*, r > 5 + Ki3
and k #1 for t <s + ek, we get

.....

(5.45) NS(T5k,y,p,v) > —logEo """ X7 (explU + V = C)
pT

with

vy2 P T s+ex3
=—zZ/O ds [ dt poge(Xiut) = Xi(s).1 =)
(5.46) k=1

s+Ki3
Z/ ds/ dt posic(Xi(t) — Xi(s), t — s),

k=1

where C > 0 is a constant that compensates for ¢ > T in (5.46). This constant may
be chosen independently of 7', as follows easily from rough estimates. By a reverse
version of Holder’s inequality, we have

EX """ ”(exp U+V)

.....

(5.47) > (Eg"s

p(exp é_[]])) 1/{( Xi,..., Xp (exp[ev]))l/g

.....

0
06(0,1),§:m

Hence, recalling (5.16) and (5.19), we obtain

I _
ATk, 7, p,0) > EAdiag(T; £k, Y, P, LV)
(5.48) 1
+ 5AVaT(Ta g, K? K,V 0, 9‘))

By letting 7 — oo, recalling (5.9), letting k — oo, using Lemmas 5.2 and 5.3
for the corresponding terms in the right-hand side and afterward letting 6 1 1, we
arrive at

5.49 minter 0= L itds4

(5.49) iminfx p(K)_ﬁ, ifd>

[drop the last term in (5.48)] and

2
.. - vy . . i
(5.50) 1/1(1’E>1C>I<'ljfl( )»p(/c)z?—l—,?p(s,l(,y,p,v), ifd=3

[keep the last term in (5.48)]. In the latter, let ¢ | 0 and K — oo and use the fact
that, as is explained below,

(551) hm j)p(&K,VaP’V):f?p(VaP7V)
el0,K—o0
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with
vy? 2 2 o
Povon= s [op [ ax oo [ av o) [Tar
feH\(R3) P R3 R3 0
I fll2=1
(5.52)
X pat = y.0) = Ve 1]
to obtain
N vy? .

(5.53) lkrglo%f/c Ap(/c)z ?—de(y,p,v), ifd =3.

Finally, a straightforward scaling argument shows that

2 2
(5.54) Povopn=(Lp)
0

with & the constant defined in (1.16). This completes the proof of the lower bound
in Theorem 5.1.

The fact that (5.51) holds is an immediate consequence of the fact that (1.16)
and, hence, (5.52) has a maximizer f , as shown by Lieb [25]. Indeed, we have

0=Pp(y,p,v)—Ppe,K;y,p,v)
vy? ) 72
(5.:55) < [ ax P [ dv o)
o R3 R3
X/ dth(-x_yat)
(0,e0)U(Kp,00)
and the right-hand side tends to zero as ¢ | 0 and K — oo because the full integral

is finite.

5.3.2. Upper bound. We begin by splitting the exponent in the right-hand side
of (5.6) into various parts. The splitting is done with the various lemmas of Sec-
tion 5.2.2 in mind and uses the parameters in (5.15) witha =¢ ora = K.

LEMMA 5.9. Forany p € N,

P T T
Z/O ds/ dt posc(Xi(t) — Xi(s), t — 5) (1 + w*(Xk(s), 5))

k=1

(5.56) < <1 +

D, D,
d_2>(1 + 11+ 1) + (1 + 3

S +201+ c*)Q>1v
K rd

P
+a+coHlv,
K
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where C* is the constant in (5.42),

1+ C*cayp

rapd/2e@=272

(5.57) D, =

with cg4 the constant in (5.44) and

p T s+eid
P30 s [ X = Xio01 =),

s+Ki3
1= Z / ds/ dt pose(Xi(t) — Xi(s), t —s),

k=1

1 = Z f ds/ Lt ppsc(Xi(t) = Xi(9). 1 = 5),
k=1
(5.58)

s+ex
IV = Z/ ds/ dt posc(Xi(t) — Xi(s), t —s),

k=1
k£l

1% :éf(fds(/osdrpp/,((?(k@) — Xk(r),s —”))

X (/Soodt Pojic(Xi(t) — Xi(s), 1 — s))

PROOF. For the term without w*, we bound

(5.59) Z/ ds/ dt posc(Xi(t) — Xi(s), t —s) < I + I+ 1 +1V.
k=1

For the term with w™*, we bound, using (5.41) and (5.42),

Z/ ds/ dt posic(Xi(t) — Xi(s), t — s)w*(Xk(s), 5)

k=1

(5.60) <(1+C) Z / ds(/ dr posic(Xi(s) — X;(r), s — ))

j.k,i=1

T
X (/é dt pojic(Xi1(t) — Xi(s), t — s))
By (5.44),

“d 0.u) < <&
AK3 Mpp//(( ’u)_Kd_3

(5.61)

. _ 4
with C, = A @D
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Hence, by (2.15),

(s—aK3)\/0
/(; dr pojic(Xe(s) — Xj(r),s —r)
s—eK C,
S/ drpp/K(O,S—r)SKd—_3,
(5.62) o

T
/ dtpp/x(xl(t)_xk(s)»t_s)
(s+e3)AT

< / 7 0,1 —s5) < Ce
t—5) < ——=.
T Jsted Poe Kd=3

Splitting the integrals in the two factors in the right-hand side of (5.60) into two
parts, accordingly, and inserting (5.62), we find that

rhs (5.60)

4 T s
5(1+C*)% Z /(; ds(/( drpp/K(Xk(s)—Xj(r),s—r)>

k=1 s—ek3)V0
(5.63)

(s £K3) T
x(/ reen dtpp/K(Xl(t)—Xk(s),t—s)>

_l’_

D, p T T
d—2 Z/O ds/ dt pojic(X1(t) — Xi(s),t —s)

K i=1

with D, =2(1 + C*)Ceyp.

The second term in the right-hand side of (5.63) can be estimated using (5.59).
For the first term, split the sum over the indices into j =k =1, j # k and k # [. For
k #1 (j # k), we estimate the first (second) inner integral by x/rgzp. As a result,
we obtain

Dy

Ihs (5.60) < —*

(I+1+1+1V)
(5.64) p y
+2(1+CHZZIV+ (1 +CHEV.
rap K

Combining (5.59) and (5.64), we arrive at the claimed assertion. [J

Our next step is to apply Holder’s inequality to separate the various summands
appearing in (5.58) so that we can apply to them the lemmas of Section 5.2.2.
We will separate all summands except the ones in /1, since the latter produces the
variational problem in (5.22) and requires a cooperation of the p random walks.

The total number of summands in (5.58) that are separated thus equals g =
p+14+p>+p(p—1)+ p=2p*+ p+ 1. Hence, substituting (5.58) into (5.56),
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substituting the resulting formula into (5.6) and applying Holder’s inequality

E(ezf 1 ) [E(e951)]1/9 n[E(e{S’)]l/{
(5.65) =2

0
96(1700)’ é':@j(q_l)a

to the expectation in the right-hand side of (5.6) (with r = 1 reserved for II), we
find that

pAL(Tsk,y,p,v)

(5.66)
2
p D,
+ ?Aoff(T’ K’Kv Y0, (1 + W)gv)
—1
+ %AHHX(T! &, K, )/7 p’ <

+ gArem(T§ K, ¥, 0, (1+ C*)fl))

o))

By letting T — oo, recalling (5.9), letting « — oo, using Lemmas 5.4-5.8 for the
corresponding terms in the right-hand side of (5.66) and afterward letting 6 |, 1,
we arrive at

2
24 % vy .
(5.67) limsup x“A (/<) <—, ifd >4,
K—>00 rq
and after estimating &, (¢, K; v, p,v) < P, (v, p, v), using (5.26) with a = ¢ and
letting ¢ |, 0, we arrive at

2
(5.68) lim sup kA% () < L + Py pov).  ifd=3.
K—> 00
For the second term in the rlght—hand side of (5.68), we may use (5.54). This
completes the proof of the upper bound in Theorem 5.1.

6. Proofs of Lemmas 5.2 and 5.4. As we saw in Section 5.3, the “diago-
nal” contributions to the lower and the upper bound in the proof of Theorem 5.1
come from Lemmas 5.2 and 5.4, respectively. In this section, we prove these
two lemmas. Let p(x,t) denote the transition kernel associated with A. Then

Posc(x,0) = p(x, 21).
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6.1. Proof of Lemma 5.2.
PROOF OF LEMMA 5.2. Leta, A > 0 be arbitrary. Estimate

Td S+aK3d X X
/(; s'[ tppsc(X (@) —X(s), 1 —5)

L7/A]  LT/A]
Z (

kA s+A
>+ )[ ds/ dt posc(X (1) — X (s),1 — 5)
k=1 ( s

k—1)A

6.1)

k=1
even odd

Vi > kola, A) = (A/a)'/3.

Note that the summands in each of the two sums are i.i.d. Hence, substituting (6.1)
into (5.16) and applying the Cauchy—Schwarz inequality, we find that
[T/A]

57 log Eff (exp[—2W (A, K)1)

(6.2) Agiag(Tia.6) = —

with

VJ/2 A s+A

(6.3) W(A,K):—Z/ ds/ dt pojc(X (1) — X (s), —5).
K 0 s

Next, note that by (2.15),

vyz A s+A V)/2 K 1
(6.4) W(A,K)§—2/ ds/ dt ppc(0,t —s) < —5A——.
k= Jo s K= pr3
Since, for fixed A, the right-hand side tends to zero as k — oo, it follows that
E (exp[—2W (A, k)]) < exp[—20EX (W (A, k)]
(6.5)
VO e (0,1), k >x1(0,A).

Indeed, given 6 € (0, 1), we can find an «(0) > O such that e™* <1 — 6x for
0 < x < «a(f). Hence, for any random variable £ with 0 < § < «(6), we have
E(e™%) <1 —0E() < e ?F®),

Moreover, since

EX (poje (X (1) — X (5), 1 —5)) = E (p(X(t) — X(s), S(t - s)))

=p(0.(1+2)a-9)
K
it follows from (6.3) that

A
6.7) EX (W (A, «)) = ”KLZA/O dup(o, (1 + §>u).

(6.6)



2256 J. GARTNER AND F. DEN HOLLANDER

Inserting (6.5) and (6.7) into (6.2) and letting 7" — oo, we find that

B vy? 0 (14p/K)A
(6.8) kdiag(a, K) > 97<1 + ;) /0 du p(0, u).
Hence,
ST, P 2 (A
(6.9) lllcl’glolgflc Adiag(a, K)=>6vy /(; du p(0, u).

Now, let A — oo and 6 1 1 to obtain the claimed assertion in (5.18). [

6.2. Proof of Lemma5.4. The proof of Lemma 5.4 relies on Lemma 6.1 below.
For a > 0, define

1
Ay, p, v)_hmsup—logEo (exp[ / ds/ dt
(6.10)

X poc(X (1) — X(s),t—s)]).

LEMMA 6.1. (a) Ifd >4, then
2

6.11) Ay, po) <X V0o<a <oo.
rq
(b) If d =3, then
14+ Cal/*(1/r3) 5
6.12 Aa(y, p,v) < ,
(6.12) ol PV ST A+ a1 Y
provided a > 0 is sufficiently small so that
1
(6.13) Ca*(0+ca'™= <1
r3
where
Desvy?\ 112
(6.14) c=corpm=(2)
N/

Before giving the proof of Lemma 6.1, we first prove Lemma 5.4.

PROOF OF LEMMA 5.4. Split the integral in the right-hand side of (5.23) as
follows:

1 S+6ZK3
/ ls/; dt pp/K(X(t)—X(s),t—s)
(6.15)

|'T/aK |'T/aK 1
( k—1)ax3

ka3 s+ar3
Z + > )/( / dt poje(X (1) — X (5),1 —5).

k=1
even odd
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Note that the summands in each of the two sums are i.i.d. Hence, substituting
(6.15) into (5.23) and applying the Cauchy—Schwarz inequality, we find that

A(J{iag(T; a,K)
T 3 2 2 ax3 s+aic
(6.16) < /e g g (exp[% / ds / di
2T K 0 s

X poc(X (1) — X(s),t — s)])

Letting T — o0, we arrive at

At < U rogm (exp| 2 [ s [
diag(a’K)—m ogEy | exp ) /(; s/s t

(6.17)
X poic(X (1) — X(s), ¢ —s)]).

Assertion (5.25) follows from (6.17) after extending the second integral to infin-
ity and applying Lemma 6.1(a) with v replaced by 2v. Assertion (5.26) follows
similarly by applying Lemma 6.1(b). [

6.3. Proof of Lemma 6.1. The proof of Lemma 6.1 is based on two further
lemmas. Recall (5.43).

LEMMA 6.2. Forany a > 0and M € N,

M o
EY (exp|:oz Zfo dt ppjc(Zi—1(t) — Zk—1(0), r)D

(6.18) k=t

M k=1 o0 /
< max EX|exp|a / dt (Xt + ,—T+t) ,
‘;Ely o< p[ lgo | dtpose( X0+ 47

Lyeees Yk—1

where Z (1) = X(%T + 1), k € Ng and yg = 0.

LEMMA 6.3. Letd > 3. Foranya >0, M € N, k € Ny and yo, ..., yr e 74,

koo ]
EX d K(X ,—T >
0 <exp|:a§)fo tpp) @)+ 7 +t ])

o o Gpremi(0) }
1 —a Y10 Gpr e ()]
provided that o is sufficiently small so that

k

(6.20) @Y Gorpm0) < 1.
=0

(6.19)

=< exp|:
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Before giving the proof of Lemmas 6.2 and 6.3, we first prove Lemma 6.1.
PROOF OF LEMMA 6.1. Let M € N be arbitrary and abbreviate
k 3
(6.21) Zr(t)=X u% +1), k € No,

which is the same as that given below (6.18), with 7' = ak?. Then

2 par’ 00
Eé‘(exp[%fo ds/Y dzpp/K(X(t)—X(s),z—s)D

(6.22)

¥ vy2 ak3/M M o
=E{ (exp K—2/O dsZ/ dt pojc(Zi—1(t) — Zk—1(s),t —s5) | |-
k=173

After applying Jensen’s inequality, we get

M ak
rhs (6.22) < —3/
ak> Jo

(6.23) x EX <exp|:%£ / dt popc(Zi1 () — Zi—1 (5), t—s):|>

—EX 24K N [ AZi () = Zi .
o(eXp[W Mg/o dt pojic(Zi—1(t) — Zk 1(0),t)D

To the expression in the right-hand side, we may first apply Lemma 6.2 and then
Lemma 6.3, both with & = vy?(ak/M) and T = ax3. As a result, we obtain from
(6.22) that

1 U]/2 a3 00

—logEg<exp[—2/ ds/ dtpp/K(X(t)—X(s),t—s)D
K 0 s

6.24) i i/[: vy2(ar /M) =0 G piae2 py 0)
ak (= 1 —vy2(ax/M) Y1) G o a2 my(0)

M—1
- VY2050 G par i (0)
T 1= vy2ar/ M) X151 G ez (0)

provided that

M-1
ak
(6.25) vyzﬁ > G0 < 1.
=0
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(a) Letd > 4. Then, by (5.44),

M-1 M—1 ca
Z G,o(a/cz/M)l(O) = GO(O) + (Z 7)G0(0)

P P plak?/ M)l
(6.26)
( - Mlog M) 1
<(1+a—F7)—
paxk rd
for some ¢; > 0 and all M € N. Now, choose
(6.27) M=M@k)=|>?].

Then substituting (6.26) into (6.24) and letting k — 00, we arrive at (6.11).
(b) Let d = 3. Then, by (5.44),

M-1 M-1 s
Z G pa2/my(0) = Go(0) + (Z 7)G0(O)

I=1 +/plak?/ M)l

[=0
6.28
( ) ( 2¢3 M) 1
<(1+ el Nl
Jpa k )r3
for all M € N. Now, choose
2 12
(6.29) M= M) = KM) 613/4KJ.
2c3
Then
2e3 M
(6.30) fim 2 M) s
K—> 00 pa K
and
(6.31) lim vy?—=_ — cal/4,

K— 00 M(K)
where C is given by (6.14). Substituting (6.28) into (6.24) and assumption (6.25),
letting k¥ — oo, and taking into account (6.31) and (6.30), we arrive at (6.12) under
assumption (6.13). [

6.4. Proofs of Lemmas 6.2 and 6.3.

PROOF OF LEMMA 6.2. We show that the function defined by

r k-1 .~
E(r)= EY /dt K(Xt ,—T z)
=11, ma (P[Z Popc\ X030 3T+
M—-r .~
(6.32) xzmﬁﬁrlﬁié‘ <exp|:a/; fo dt ppjc(Zi—1(t) — Zi—1(0), 1)

r o0 l
+a2/ dtpp/K<X(t>+zz,—T+t)
=179 M
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forr =0,..., M — 1 is nondecreasing in r. Then E(0) < E(M — 1), which is the
desired inequality. [Note that for r = M — 1, the first term in the right-hand side of
(6.32) corresponds to k =1, ..., M — 1 in the right-hand side of (6.18), the second
termto k =M, [ =0, and the third termtok=M,[=1,..., M — 1.]

We now fix r arbitrarily. We want to show that E(r) < E(r + 1). To this end, we
also fix z1, ..., z, arbitrarily. Separately handling the summand for k = 1, splitting
the integral over (0, 0o) into integrals over (0, 7/M) and (T /M, 00), shifting time
by T /M for the latter and using the Markov property of X at time 7 /M, we obtain

M—r .~
EX (exp[a > / dt ppsic(Zk—1(t) — Zk—1(0), t)
k=19
+ai‘/oodtp /K<X(t)+Z1 LT+t)
1=170 " M
T/M
= Eg <exp|:a/0 dt ppjic(X(1),1)

00 1
6.33 dt Z1(t), —T +t
(633) taf pp/x( 0. +)

M—(+1) .o
+a Y /0 dt ppsc(Zi(t) — Zi(0), 1)
k=1

r

T/M i
—{—aZ/ dtpp/,(<X(t)+Zl,MT+t)
1=170

r+1 00 l
+0(Z/ dtpp/K<Zl(t)+Zl—l»_T+f>:|>
1=270 M

and

rhs(6.33)

T/M
<E¥ (exp|:a/(; dt ppse(X (1), 1)
I
dt ppi (X(t) + 2z, MT + Z)D

00 1
34 E / K(X ,—T )
(6.34) x max Eg (exp[a A dt pp; () + 20 ;i +1t
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M=(+1) oo
va Y [ dpoge(Zier) = Zia 0.1)
k=1

r+1 00 l
+a2/ dlpp/K<X(l)+zo+zz_1,—T+t>]>.
=270 M

In the last line, we have maximized over Z1(0) = X (T /M) after using the Markov
property of X at time 7 /M. Hence, combining (6.33) and (6.34), we get

FARRTRTY 4y

M-r .~
max E§ (exp|:a > /0 dt posi(Zi—1(t) — Zx—1(0), 1)
k=1

r 00 l
+aZ/ dtpp/K<X(t)+zl,—T+t>
1=170 M

.....

(6.35)
M—-@r+1)
X ZlmaZX+1 IE(})( (exp|:a Z /0 dt pojic(Zk=1(t) — Zr—1(0), 1)
""" ’ k=1

o0
+oe2/ dt
=170

X Pp/k <X(t) + z, %T + t>:|>

Here, we extend the first two integrals in the right-hand side of (6.34) from 7/M
to infinity, use the fact that yop = 0 and replace zo by z; and zg + z;—1 by z;. Sub-
stituting (6.35) into (6.32), we get that E(r) < E(r 4+ 1), as desired. [

PROOF OF LEMMA 6.3. A Taylor expansion of the exponential function
yields

00 k
e 05 (50 14

=0

o0
_ Za’"Eé‘(

m=0

mooee Lk !
]_[/ d?iZPp/x(’((fj)ﬂl»MTJFI./'))

j=1"1-1" =0
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with #9p = 0. A successive application of the Markov property at times #,,—1, ..., ]
yields

Eg Hf dtjzpp//c X)) +y, =T+t
j=17%=1" =0 M

J

= E?f( I1 / 1 dt; ZPp/x(X(fj) tyn T+ fj))
j=1"1- 1=0

Zj

o0

k

l

631 x [ din Y p(Xt) 430 2 (5T 4 1)+t =t
tin—1 1=0 K M

m—1 oo k ] k
<Ef < ]_[ / dt; pr/x (X(tj) + 1, MT + tj)) (Z G(pT/KM)l(O))
j=1 1=0

lj-1 1=0

k m
<...< (Z G(pT/KM)l(O)> .

=0

In the first inequality, we have used the fact that p(x,t) < p(0,¢) and that ¢
p(0, ¢) is nonincreasing. Substituting (6.37) into (6.36), summing the geometric
series and using the inequality 1 4+ x <e*, x € R, we arrive at (6.19). [

7. Proofs of Lemmas 5.3 and 5.5. As we saw in Section 5.3, the “variational”
contributions to the lower and the upper bound in the proof of Theorem 5.1 come
from Lemmas 5.3 and 5.5, respectively. In this section, we prove these two lemmas.

The proof of Lemma 5.5(i), which applies to d > 4, is easy. Indeed, in the right-
hand side of (5.19), separate the p> summands with the help of Holder’s inequality
[as in (5.66)]. The terms with k = [ are negligible for x — oo, by Lemma 5.6(i)
with a = ¢, while the same is true for the terms with k % [/, by Lemma 5.7(i).
Lemmas 5.6 and 5.7 are proved in Section 8.

Thus, we may henceforth restrict our attention to d = 3.

7.1. Space-time scaling. We begin with a space-time scaling of the random
walks. Let Z = k=17 and define

X9t =" X (), =0, k=1,...,p,
(7.1)
P x, 1) =13 pliex, K%1), erz, t>0.

Each X ,EK) lives on Z2, has generator

(7.2) (A =k> Y O -f®].  xeZ,
yeL}
lly—2xll=x~"
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and has transition kernel whose density is p*) w.r.t. the discrete Lebesgue mea-
sure on Z3, where each site carries weight k3. As k — oo, each X,(CK) con-
verges weakly to Brownian motion, which has as generator the continuous Lapla-
cian Aps, and p' converges weakly to pg, the density of the transition kernel
associated with Brownian motion w.r.t. the continuous Lebesgue measure on R3.
The last convergence is uniform on compact sets, that is, for every compact set
C CcR3 x (0, 00) and every 6 € (0, 1), there exists kg = ko(C, 6) such that

1
(7.3) QPG(XJ)EP(K)(XJ)S5PG(XJ) Vix,1)eC, k =«ko.

Further, note that

’ 0, 32
(7.4) min 26012 _ pa.ua) (ﬂ) Vur > uj.
xeR3 pG(x,u1)  pc0,uy) uy

7.2. Proof of Lemma 5.3.
PROOF OF LEMMA 5.3. Fix0<e¢e < K <00, § >0 small and 6 € (0, 1).
Abbreviate
L=L(,¢)=1Te/d],
(7.5) M=MG,K)=|K/5],
N =N(T;8,k)=|T/8c].

Fix a large open cube Q C R>, centered at the origin. Later, we will take limits in
the following order:

(7.6) T — oo, K — 00, 510, 611, 01 R3.
Let Cg be the event

Co=Co(N,M,é,k)
(7.7)
= X)) e QVO<t <(N+M)sk, k=1,..., p}.

Then from (5.19), (7.1) and the lower bound in (7.3), we get

x4 x
(7.8) Avar(T; 6, K, k) > p—logIE 0 (exp[U]]lCQ)
with
T/K
/+ di p® (X,(”)(r) — x%), f(z _ s))
STEK
(7.9)

>
[,

i

/ dt Opg (x;“>(t> X“)(s),ﬁ(t—s))
s+ek K
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for k > ko(C,0) with C =20 x [ep, Kp] (0 being the closure of Q). Moreover,

rhs (7.9)
2 P N né K (n—1)5K+KK
X s
> — dt
T K klZ:: ; (n—1)dk ndk ek
(7.10) x 9PG(X © (1) — X9 (s), B(t—s))
K

) r N —1 néx (n+m)dk
>—— > > Z /( ds /( dr

n—1)8k n+m—1)8k
<06 (X0 - X0 0. 2t -9)),

Next, note that (m — 1)3p < f(t —5) < (m+ 1)ép for all s, ¢t in the domain of
integration corresponding to n, m and use (7.4) to obtain

1 X, xt)
(711) var(T &, K K)>p—10gE0 ..... 0 p (eXp[V]IlcQ)
with
p N -1 nék (n+m)dk L 32
& IS / / dt9<—)
(7.12) K ki=1n=1 m=L417 (=D Jnkm=1)dk L+2

x pe (X @1y = X1 (5), im — 1)dp).

In this last expression, the time coordinate of the kernel is fixed for each m. There-
fore, if we introduce the normalized occupation time measures

(k) 1w ()
dk,r(A)=g/( b dsTa(X; 7 (s)),
r—1)8k

(7.13)
k=1,...,p,r=1,..., N+ M, A C R3 Borel,

then we may write

L \3/2, p N
V:9<L+2) p5K“ZIZ

M—1
n=lm=L+1
(7.14)

[ gl [ =
x 8ppc(y — x, (m — 1)8p).

This representation puts us in a position where we can carry out a large deviation
analysis, as follows.
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For € M1(Q), the set of probability measures on Q, let Ug(un) C M1(Q)
denote any weak open neighborhood of u such that

e Up(n) = /Q v1(dx) fQ va(dy) pa (y — x, (m — 1)5p)

(7.15) > /Qu(dX) fQ (@) p6 (y —x. (m — 1)sp)
Ym=L,...,.M,

and let Cg , denote the event

(7.16)  Cou={E) eUpw) Yk=1,....p, r=1,....N+M}.
Then, for any u € M1(Q), we may bound, via (7.11) and (7.14),

AV&T(T; 8’ K? K)
X}K) (1)

M—1

x s [ u@ [ w@y Y dppoly - x. on— i)
0 0 m=L+1
1 X(K) 77777 X(K)

By again appealing to (7.4), the sum in the first term in the right-hand side of (7.17)
can be estimated as follows:

M-—1
> Sppc(y —x, (m —1)ép)
m=L+1

L 3/2 A(M—2)8p
> —— du —Xx,u).
- (L +2) /(L—l)ap rely )

(7.18)

As for the second term in the right-hand side of (7.17), by using the indepen-
dence of the p random walks as well as the Markov property at times réx for

r=1,..., N+ M, we may estimate (with X ) = Xi'(), g — Ei"r))

x® L x®
o " (CoNCou)

.....

=[PX" (X1 e QVO <1 < (N + M)«
(7.19) EX eUp()Vr=1,....,N+M)]’
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> [PE(X®© @) e Q VO <t < (N + M)sk,
E® e Ug(n) and X©(réx) € 50 ¥r=1,...,N + M)]’

> [ min ~ PX“(X® () e QV0 <t <k,
xeZ3N(1/2)0

p(N+M)
E2® e Ug(n) and X (8x) € %Q)}

The dependence on N has now been pulled out of both terms in the right-hand
side of (7.17) and so we can take the limit 7 — oo to obtain from (5.20), (7.5) and
(7.17)—(7.19) that

szv_ar(s, K, «)
L 3 Uyz (M=2)ép
> 02(—) —pf M(dx)/ 1(dy) du pG(y — x,u)
o 0 0 (

L+2 L—1)§
(7.20) o

+—1log min PXY (X(K)(t) €QV0<t<ik,
Sk xeZ3N(1/2)Q
1
E2® e Ug(n) and X (8x) € EQ)

for k > ko(C, 0). The final step in the argument is the following large deviation
bound:

LEMMA 7.1. Foreach u € M1(Q),

| ) ®

liminf — lo min  P¥ (X(K)t e OV0<t<ik,
k=00 §iKc gxezgn(m)Q * (HeQvo=r=
(7.21)

1
5% € Uo (o) and X956 € 5.0} = ~So(
with Sg : M1(Q) — [0, o] given by

. du .
(722) Sou = { Ve 115, if n < dx and \[—= = f(x) with f € Hy(Q),
00, otherwise,
where HO1 (Q) is the completion of C2°(Q) (the space of C*°-functions f:Q — R
with compact support) w.r.t. the H' -norm || f || y1 = | fll2 + IV f 2.

The proof of Lemma 7.1 is deferred to Section 7.4. Letting ¥k — oo in (7.20),
using (7.21), letting 6 | O, recalling (7.5), letting 6 1 1 and afterward taking the
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supremum over U € M1(Q), we arrive at
liKn_l)icngz)u\;r(S, K, k)
vy? 2 2 Kp
023 = sw |p [ a2 [y 2o [ dupet—x
P Qo o ep

feH}(O)
Il flla=1

- ||VRaf||%]

Finally, let Q 1 R3 and use a standard approximation argument to show that the
variational expression in the right-hand side of (7.23) converges to

vy? 2 2 Kp
sup [—p/ dx f (X)/ dy f (y)/ du pG(y — x,u)
FeHI(R3) 1Y R3 R3 &p

I/ lb=1
724)

- ||vRaf||%]

The latter is precisely &, (¢, K; y, p, v) as defined in (5.22), so we have completed
the proof of Lemma 5.3. [

7.3. Proof of Lemma 5.5. At the beginning of Section 7, we dealt with
Lemma 5.5(i). Thus, we need only prove Lemma 5.5(ii).

PROOF OF LEMMA 5.5(ii). Part of the argument runs parallel to Section 7.2.
Fix ¢, K, §, 0 as before. Retain (7.5), but with [-] and |-| interchanged. Let Q C
RR3 be a large closed cube, centered at the origin. Later, we will again take limits
in the order given in (7.6).

Let [(Q) [resp. 1(Q*))] denote the side length of Q [resp. 0¥ =0n Zi]. Let

X,EK’Q)(t), t>0,k=1,...,p,
(7.25)
peQx, 1),  xeQ, >0,
denote the Q-periodization of (7.1), that is,
X9 =X 1) mod(0®),
k
p*D(x, 1) = Z p (x + EI(Q(K)), t).

keZ3

(7.26)

Similarly, let

(7.27) P, xe€Q. 120,
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denote the Q-periodization of the Gaussian kernel, that is,

(7.28) P2, ="" pglx +kI(Q),1).
keZ?

From (5.19), (7.26) and the upper bound in (7.3) (which carries over to the
Q-periodized kernels), we get

1 (x,0) (x,0)
(7.29) Avar(T &, K,K)fp—Tlog]Eé(f“’O ..... X explU])
with
2. p T/k? s+Kk
:% Z/O ds/+ dtp(K’Q)(Xl(K’Q)(Z)—X,((K’Q)(s),g(t—s))
k,l:l STEK
(7.30)

2

2. p T/k s+Ke

Vv

<y / ds/ di =p'@ (X,(K’Q)(t) — x{9s), f(z—s)>
Ki=1 0 s+ex 0 K

for k > ko = ko(C, 0) with C =20 X [ep, Kp]. Moreover,

rhs (7.30)
V)/2 P N néx nék+Kx
=— 2 Z/ dS/ dt
Kk i=1n=1"@®—Ddk (n=1)8k+ex
! J
(730 x gl’E;Q) (XZ(K’Q)(t) — X%, iU s))

2

N M s (n+m)8
SULZZZ‘/(WK ds/;n—i-mlcdt

K S nm1m=p Y (r—1k ntm—1)8k

1 P
x o P& (X[(K’Q)(t) — X9, (- s)).

This is the analogue of (7.9) and (7.10).
Next, use (7.4) to obtain
1 (x.0) (x.0)
(732) Ava(T: 6. K, 1) < —logEy | o
4

with
2 P N M nék (n+m)dk 1/L 1 3/2
vy +
V=—§:§:§:/ ds/ dz—(—)
ke k,l=1n=1 ( O\L -1

=L (n—1)8k n+m—1)8k

(7.33) x p2 (XD (1) — XD (s), (m + 1)8p)
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1/L+1\%v P ~ -
:5<L— 1) Z Z Z/ “l(cKnQ)(dX)/ “I(Kn%n(dY)

k,/=1n=1m=L
x 8ppe? (y — x. (m + 1)8p),

which is the analogue of (7.12) and (7.14). Here,

rék

1
B0 =gc [ dsta(x(*20).
8ic Jor—1)s
(7.34)

k=1,....,p,r=1,...., N+ M+ 1, A C Q Borel,

is the analogue of (7.13).
For u € M1(Q), let Up(n) C M1(Q) be any weak neighborhood of w such
that

(1) for py, o € M1(Q);

e Up(ur), v € Up(a) —> /vl(dx)/ (@) p@(y — x,u)

(7.35) < / w1 (dx) / 2@y p @ (v — x, 1)
Vuelep, Kp+25pl;
@) for u € Mi(Q);

(7.36) inf  So(u') > 0S0().
welg ()

Here, (7.35) is the analogue of (7.15), while SQ is the rate functlon defined in
(7.45) below. The latter inequality can be achieved because u — SQ (w) is lower
semi-continuous. Conditions (1) and (2) will be needed in the proof of Lemma 7.2
below (see Section 7.4).

Since M1 (Q) is compact, there exist finitely many pu1, ..., u; € M1(Q) (with
I not depending on 7', ) such that

1
(7.37) M1(Q) C [ Uo(md).
i=1

Let
(7.38) g={J:Al,....p}x{1,.... N+ M + 1} = {1,...,I}}.
For J € g, let Cg,; denote the event

(739) Coy={ES? e Ug(ywn)Vh=1,...,p.r=1,...,N+M+1}.
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Then, because of (7.37), we may bound

Avar(T; 6, K, k)

(7.40) x®0  xk0)

1 yeees 1
< o7 logr}leagEOfn’o " (explV]lcy,) + T log|g|.

On Cyp, s, we have, via (7.33) and (7.35),

1 /L+1 3/21))/2 p N M
V< —<—> ——8k Z Z Z / WJ (k n)(dx)/ W (1.ntm)(dy)
= 2 ’ ’
an 0=\L -1 P Ki=tn=1m=L"2 0

x 8p p(GQ)(y —x, (m+ 1)dp).

X(K'Q)
" (Co.p)

N+M+1

P
<TT 1 max PX“9(E%D e Up(usun)).
k=1 =1 XN

.....

Combining (7.40)—(7.42), it follows that

Avar(T; 6, K, k)

1 [1 <L+1)3/2uy2
< —max| —| —— —

P N M
DD ITD VY NITSITEY TEICED

X 8pp£;Q) (y —x, (m + 1)8p)

(7.43)
p N+M+1 «.0)
+ 2 10gx£g§QPf (E(K’Q)E‘UQ(M(k,r)))}
k=1 r=1 K
+ L oglgl
— 10
pT £

for k > ko (C, 0).

Below, we will need the following upper large deviation bound (with 2 @) =

E(l'f’lQ)) which is the reverse of Lemma 7.1:
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LEMMA 7.2. Foreachie{l,..., I},

1
(7.44) hmsupglog n%?r)w(QPX( Q>(~(K 0) ¢ U (1)) < QSQ(,u,)
X€

with §Q the Q-periodization of Sg, that is, SQ M1 (Q) — [0, oo] is given by
IVRs fl3, i <dx

N _ d
(7.45) So(n) = and d_p“ = f(x) with f € H;}er(Q)’
\ dx
00, otherwise,

where Hper(Q) is the space of functions in H" (Q) with periodic boundary condi-
tions.

The proof of Lemma 7.2 is deferred to Section 7.4.
Next, define

MI{,SZI’LJU@") fOI‘kZl,...,p,
(7.46)
r=1,.... N+ M+1,(r —1)éx <s <rék.

The measure-valued paths s +— ,u,{ , are piecewise constant and take values in
{1, ..., ur}. Once again using (7.4), we may revert back time from sums to inte-
grals to obtain

e Z / 3oy () / st @)3ppS2 (v = x, (m + 1)
n=1
3/2
()
Tk \L+1
X Z/ ds Z /
p(Q) <y — X, B(t —s)+ 26,0)
L+1 3/2 NBK H—(M-H)Slc
( ) / /s-i-(L Déx
)
/Q:U“ks(dx)/ Mzz(dY)P(Q)( —X,;(I—S)+25p>

L+ 1\3? [(N+M+Dsk (N+M+1)8k
( —1) /0 ds/o dt L{(L—1)sc<t—s<(M+1)sx}

(n+m)ék

1 / ui y(dx) / ui (dy)

(n—1)8k (n+m—1)8k

(7.47)

/Q K S(dX)/ 25 t(dy)P(Q)< —x, g(t —s)+ 28,0)
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and, according to Lemma 7.2,

N+M+1

“0)
> logxergggQPX (82 e Ug(usan))
r=1

(N+M+1)éxk 1
:/ ds—log max IPX( Q)("'(K 0 ¢ ‘L(Q(uk B))

(7.48)
dk T xezinQ

IA

) (N+M+1)éc  __ J
—(9/0 dsSo (i)

for k > k1(C,0) > ko(C, 0). Inserting (7.47) and (7.48) into (7.43), we arrive at

1 1<L+1)3uy2
<—max| —(——) —
pT Jeg| 62\ L —1 K

(N+M+1)8k
X / ds
ki=1"0
(N+M+1)8k
X/o dt T((L—1)s <t —s<(M+1)8k}
(7.49)
J
X/Q ,u,kﬁs(dx)
P
< [ ndanp@ (v —x. 2 -5+ 250)
0 K
P A(N+M+Déc
—?y / dsSQ(,u,{’S)i|
k=19
+ L loglg)
— 10
pT s

for k > k1(C, 6).
At this point we can perform a time-diagonalization.

LEMMA 7.3. Forevery A > 0and pgs € M1 (Q)withk=1,...,p,0<s <
(N + M + 1)ék,

ds

A (N+M+1)sk
_/ dt (L —1)si<t—s <(M+1)sc)

/(N+M+1)6K

s

150 x Y i) [ sty (v = 2 =5+ 259

k=1
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P A(N+M+Ddc
- f ds So(ue.s)
k=170

<p(N+ M+ 1)«
A (M+1)dk
4

X sup [ / v(dx)/ v(dy) du
veM(Q)LK 0 (0] (L—1)8k
X p(GQ) (y — X, Su + 28p) — §Q(U)i|.

The proof of Lemma 7.3 is given below. Inserting (7.50) with A = 9*4(£—f})3vy2

into (7.49), inserting (7.45), letting T — oo and recalling (5.27), we obtain

K2AE (e, K, 1)
1 /L+1 3vy2
<6% sup [9—4(—1> —p/ dez(X)f dy f2(y)
ferl O \NL =1/ p = Jo 0
1fll=1
(7.51)
(M+1)8p (0) )
T (y—x,u+2ap)—||vRaf||2}
(L—1)ép
+ Liogr
—1lo ,
Sk £

where we note that log|J| = p(N + M) log I and recall the last line of (7.5). Now,
let k — 00,6 | 0 [yielding L — oo, (L—1)6 > eand (M + 1) — K]and 8 1 1,
to obtain

24+
Avar

lim sup (e, K, k)

K— 00

vy? Kp
< s [ [ axprw [ ay o) [ dup@o-xw
fetl (@b P70 0 &

Ifla=1
(7.52) ?

- ||VR3f||%}
=P . Ky, p.v).
Finally, let Q 4 R3 and use the following:

LEMMA 7.4. Let Py(e, Ky, p,v) be as defined in (5.22). Then

(7.53) limsup P9 (e, K3 7, p,v) < Pp(e, K3 7, p, 0).
O1R’
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The proof of Lemma 7.4 is deferred to Section 7.4. Combining (7.52) and (7.53),
we have completed the proof of Lemma 5.5. [

We close this section by proving Lemma 7.3.
PROOF OF LEMMA 7.3. Abbreviate

1 p
(754)  vy=—) mks€MI(Q),  0=s=(N+M+1k.
P

Since u +— §Q (u) is convex, we have

ZA (N+M+1)dk (N+M+1)8k
Sfo dt L{(L—1)sic<|t—s|<(M+1)8k)

lhs (7.50) < — —
2 k Jo
(155) y / vy (dx) / w(dy)p(@( ,3|t—s|+2ap)
K

(N+M+1)8c
-» dsSo(vy).

where we syrnmetrize the integrals w.r.t. s and 7. Let B > 0 be the size of Q, that
is, 0 =[—B, B)>. Then p(Q) admits the Fourier representation

3 /B 2lqlPt =it/ B)g-x xeQ, t>0.
qeZ?

(7.56)  p@(x,1) = (23)3

Let

(7.57) ﬁs(q)zf e TIBXy (dy), qgeZ’.
0

Then we may rewrite

PP A [(NEM+DSe (N+M+1)ék
/ dS/O dt L(L—1)sx<|t—s|<(M+1)sK}

rhs (7.55) = S e
K JO

Z —(/B)?|q*[(p/K)]t—s]|+258p)
qeZ?

(N+M+1)dc
— p/o ds So(vs).

Since this expression is real-valued and

(7.58)

X 2B) Vs (9)Vi (q)

(7.59) Re(Ds(q)0; (@) < 3[05(@)* + 2191 () I,
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we find, after inserting (7.59) into (7.58) and afterward undoing the symmetriza-
tion w.r.t. s and ¢, that

A (N+M+1dk sH(MA+1)8k
ths (7.58) < p2—/ dsf dt
0 K

+(L-1)dk

_ 2
(7.60) (23)3 Z e~ (7/B) g2 [(p/K)(t— S)+25p]|v (q)l
(N+M+1)dc
— p/o ds So(vs).
Again using (7.56) and (7.57), we see that
rhs (7.60)
(N+M+1)8k
= p/ ds
(7.61)
(M+1)ék 0) P
[ p/ vs(dx)/ vs(dy) du pg (y —X,—U +26,0)
(L-1)éx K

~So0m)]|
Clearly, this expression does not exceed the right-hand side of (7.50). O

7.4. Proofs of Lemmas 7.1, 7.2 and 7.4.

PROOF OF LEMMA 7.1. Let X% be the scaled random walk on Zi [as in
(7.1)], let T be the first time X*) exits Q, and let 2 be the normalized oc-
cupation time measure of X ) [as in (7.13)]. Define the conditional probability
measures

(7.62) Q)(CK)(.) = Pf(K)(E(K) €- |r(") > 8k, X (k) € %Q)

Let ¢y denote the principal eigenvalue of the Laplacian A g with Dirichlet bound-
ary condition in L?(Q). We will prove the following:

(a) uniformly in x € %Q,

1 K 1
(7.63) hm —logIP’X( )(r(") > 8k, X® (k) € EQ) = {0;

—00 §k

(b) the family (Q,(CK))DO satisfies the full large deviation principle on M1 (Q), uni-
formly in x € %Q, with rate « and with rate function S¢ + o [recall (7.22)].

As a consequence of (a) and (b), the family (@)(CK))DO of sub-probability measures
defined by

(7.64) QWO =P (E® e, 1@ > 5k, X© () € L)
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satisfies the full large deviation principle on M1 (Q), uniformly in x € %Q, with
rate §« and rate function Sg. The latter, in turn, implies Lemma 7.1.

The proof of assertions (a) and (b) is achieved as follows. Given a potential
V e CX(Q), let £p(V) denote the principal eigenvalue of Ag + V with Dirichlet
boundary condition in L2(Q). It is well known that V > (V) is Gateaux differ-
entiable and that S¢ has the following representation as a Legendre transform:

765 Souo=_sw |[ van-tn].  weczor,
veCce(Q)L/ 0

where C2°(Q)* is the algebraic dual of CZ°(Q) equipped with the weak™ topology

[(7.65) is dual to the Rayleigh—Ritz formula for ¢o(V)]. We may therefore apply

a uniform (w.r.t. the starting point) version of Dawson and Girtner [9], Theorem

3.4, to see that, in order to prove (a) and (b), it is enough to show that

. 1 x () 8k (3
lim — logE; (exp[f V(X (s))ds}
0

Kk—00 Sk
1
(7.66) x 1{#) > 81, X (8k) € 5Q})

=&o(V),

uniformly in x € %Q for all V € C2°(Q). (An argument similar to that in [9],
Section 3.5, shows that Sp(u) < oo, u € C°(Q)* imply u € M1(Q), which is
needed for the application of [9], Theorem 3.4.) Note that assertion (a) coincides
with (7.66) for V =0.

Fix V € C2°(Q). Abbreviate

)y ~ x® / —— }
N=1 f E V(X d
=) =log _inf E (exp[ A (X"(s))ds
(7.67)

X 11{#) >t, X() e %Q}).
Fix T > 0. For ¢t = d«k, split the integral in the right-hand side of (7.67) into the

sum of |§«x/T] integrals over intervals of length T, = 8k /|6« /T ]. Then, using
the Markov property of X ) at the splitting points, we get

(7.68) s9Gie) > 181/ T |sY(T).
Hence,
(«)
5 1

timint =% > L imints® (1)

K—> 00 oK T «k—o
(7.69) —11 inf EW(e UTV(W( ))d}

' T %iedme T \TPLy e

X ]l{r >T, W(T) € %QD,



INTERMITTENCY ON CATALYSTS 22717

where W is Brownian motion on R® with generator Ags and T denotes the first
time W exits Q. To derive the last line of (7.69) we use a uniform version of
Donsker’s invariance principle. It is well known that the right-hand side of (7.69)
tends to ¢o(V) as T — oo. Therefore, we arrive at the lower bound

()
5
(7.70) limint =)

K— 00

= &o(V).

To get the corresponding upper bound, abbreviate
" t
771 s¥(t) =log sup EX" (exp[/ V(X®)(5)) ds]]l{r(K) > t}).
xeQ 0

Then, in analogy with the above considerations, we obtain, through a superaddi-
tivity argument, that

()
8

(7.72) lim sup st (%)

Sk

K— 00

<¢&(V).
We then combine (7.70) and (7.72) to get (7.66). [

PROOF OF LEMMA 7.2. Let X%9 denote the random walk on Q®) =
on Z?( obtained by wrapping X ) around Q) [recall (7.26)]. Let

. 1 Sk
(7.73) 20 (A) = o / ds1a(X“9(s)),  ACR’Borel,
K JO

and
(7.74) QW () =PX“? (@80 ¢e.).
Then the analogue of (b) reads as follows:

(b’) The family (@)(CK))DO satisfies the full large devia&on principle on M1(Q),
uniformly in x € Q, with rate §« and rate function Sg [recall (7.45)].

The proof of assertion (b") follows the same lines as the proofs of assertions (a)
and (b) and is, in fact, even simpler. Using (b) together with (7.73) and (7.74), we
arrive at the assertion claimed in Lemma 7.2. [

PROOF OF LEMMA 7.4. Let Q = Qp =[—B, B)3. Write Q3(¢) = 05 + ¢,
g € R3. Let

(7.75) peP(x,n= plx+2Bk1)
keZ?

denote the Qp-periodization of the Gaussian transition kernel pg. Recall that
leer(Q p) denotes the space of functions in H L(Qp) with periodic boundary con-
ditions.
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Fix B>1and f € per(QB) with || fllo=1.Put A= B — VB. Let f denote
the Q p-periodic extension of f to R. Then

1Qal
(7.76) [ d [ ax =
1081 Jos " Jouw 105l
and hence there exists g € O p (depending on B, f) such that

[Qal
7.77
777 /QA((n f()>|Q|

Let i :R? — R be a smooth function (depending on B, ¢) satisfying

(7.78) O<hp=1l hp= {(1) 2E H%f\(qQ)’B(Q)-

We may assume that

(7.79) D=||A(hB(1—hB))+2|VhB|2||OO<oo

with D not dependent on B, g, f. Define

hgf

Ihs fl2

Then fp € H'(R?) and Il fBll2 = 1. Moreover, by (7.77) and (7.78) we have
1Qal =~

(7.81) <lhpfl3<1
|OBl

Hence, ||h3ﬂ|2 — las B — oo.
Next, observe that

lx — y+2Bkllco = 2B(|[klloo — 1) +2(B — A),

x,y€Qalg), keZ3\{0}.

(7.80) fB=

(7.82)

Because
(7.83)  pg(x,1) = (dmt) > expl—||x||? /41] < (drt) /% exp[— x|, /4],

it follows from (7.82) that there exists §p (not depending on ¢, f), satisfying
§p — 0 as B — o0, such that
Kp

PP (x — y,1)dt 5/ po(x —y.0)dt + 8,
£

&p P

(7.84)
x,y€0a(q).

Moreover, from this it also follows that there exists a constant C < oo (not de-
pending on B > 1, g, f) such that

(7.85) / P (x —y,0)dt <C,  x,y€Qalq).
&p
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With the above estimates in place, we next derive an upper bound for
ase [ ax[ ay [ a0 7070
OB p

Since fis Q p-periodic, we may replace the domain of integration Qp X Qp by
0OB(g) x Op(q). After that, we may split the integral into two parts: Qs(q) x

Oa(g) and [QB(q) x Op(@)I\[Qa(g) x Qa(g)]. The latter coincides with the
union of [Qp(g) \ Qa(g)] x Qp(g) and Op(q) x [Qp(q) \ Qa(g)]. Therefore,
using (7.77), (7.84) and (7.85), we obtain

/ dx / dy f dr pP (x — y, ) F2() F2()
()] 0Og

Kp ~ ~
< / dx/ dy/ dt po(x — y.0) F2(x) F2(y)
0a(q) 0a(q) £p

+8p +2C dx f2(x)
OB(@)\Qa(q)

Kp
7.87 < d d dt — v, 1) f? 2
787 < /QA@ x fQA(q) y /w 6=y, £2(0) F2()
|OB\ Oal

OBl
[0al Kp ) )
d d d —y,
= 1081 Joa@ x/QA(Q) y/s,o tpG(x —y,0) f7(x)f7(y)

+sp +3C|QB\QA|’
Q8|
where, in the second inequality, we use the fact that f 2 =(hpf )2 =|lhpg f ||2 f 5=

fB on Q4(q).

Next, we derive a lower bound for |V f ||% in terms of fp. First, estimate

IV £I3 =f dx |V(hg F)+ V(1 = hs) )
03(q)
(7.88)

+ 6 +2C

dx|V(hg f)]?+2 dxVhgf)-V(A —hp)f).
Z/QB@ V(g P+ /Qm) xV(hgf) V(1 —hp)F)

But
(7.89) V(hp[)- V(A =hp)f) = (FV (sl = hp)) - V. = Vhpl*
and integration by parts shows that

/ dx (fV(hg(1 —hp)))-Vf
05(q)
(7.90)
=1 dx f2A(hg(1 —hp)).
2/Qﬂ(q) x J7Akp(1 = hp))
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Hence, recalling the definition of fp and taking into account (7.77), (7.79) and
(7.81), we obtain

IV £13 = ks FIZIV £33

7.91 - dx F2[V(hg(1 —hp))+2|Vhg|?
( ) -/QB(q)\QA(q) Xf [ ( 5( B)) | B|]
104l > 108\ Qal
XAy _ =25 EAp

=105 VB2 0

Combining (7.87) and (7.91) and abbreviating o = (vyz/,o)p, we arrive at

Kp
o /Qde /Qde / Cdtpat—y.0 20 L0~ IV I

[Qal 1O\ Q4

< ——P+adp+ BaC + D)————.
|05l |05l

Since C, D and ép do not depend on f, we conclude that [recalling (7.52)]

(7.92)

P (e, Ky, p,v)
_ 1041 195\ 04
Y] 108l

Now let B — oo and use the fact that S — 0 and |Q 4|/|Qp| — 1, to arrive at the
assertion claimed in (7.53). O

(7.93)
Ppe,K;y,p,v)+adp + BaC + D)

8. Proofs of Lemmas 5.6-5.8. In this section, we prove Lemmas 5.6-5.8,
which deal with the terms that are asymptotically negligible as x — oo.

8.1. Proof of Lemma 5.6.
PROOF OF LEMMA 5.6. Using the rough bound

B.1)  po(X(®) = X(s),t —5) < ppc(0,t —5)= P(O, g(f - S)>,

we conclude from (5.30) and (5.31) that

24+ vy? [
(8.2) K Aggpla, k) < —Kf dt p(0,1).
P pax?
Because of (5.43) and (5.44), the expression in the right-hand side is bounded
above by a constant times a~@=2/2¢=@=3) From this, the claims in (5.32) and
(5.33) follow. [
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8.2. Proof of Lemma 5.7. For the proof of Lemma 5.7, we need two more
lemmas. Let § denote the Green operator acting on functions V : Z¢ — [0, co) as

(8.3) GVI® =Y. Gy—-xV(), xeZ’
yeZd

with G(z) = fooo dt p(z,t). Let || - ||co denote the supremum norm.

LEMMA 8.1. For any V.74 — [0, 00) and x € 74,

(8.4) EX (exp[/oodr V(Xo))D <= 11§V ),
0

provided that

8.5) 19V oo < 1.

LEMMA 8.2. Forany o, > 0anda > 0,

T s+ai3
Eé{g’(exp[afo ds/ + dt pg(Y (1) — X (s), 1 —s):|>

< Eéf(exp[a ‘/(-)T ds /SHaK} dt pg(X(s), 1t — s)})

Before giving the proofs of Lemmas 8.1 and 8.2, we first prove Lemma 5.7.

(8.6)

PROOF OF LEMMA 5.7. Using Lemma 8.2, we get from (5.34) that

1 X VVQ T s+aK3
Anmix(T; a, k) < ?logEO (exp[—z/ ds/ dt pojc(X(s),t — s)])
K 0 Ky
(8.7)

1 o0
< ?ngg‘ (exp[/ ds va,K(X(s))]),
0
where
2 paK2
(8.8) Vo e(x) = i/ dt p(x,1),  xelZd
oKk Jo

It follows from (5.43) and (5.44) that, as k — o0,

vy2 paK2 oo
(8.9) 19 Vauxlloo = 22 / dt / ds p(0, s)
ok Jo t

tends to zero ford > 4 and 0 < a < oo and tends to a constant times a!/? for d = 3.
Hence, by Lemma 8.1, for large « the expectation in the right-hand side of (8.7)
is finite for 0 < a < ag with ag = oo for d > 4 and agp > 0O sufficiently small for
d = 3. Thus, by letting T — oo in (8.7), we conclude that

(8.10) At

mix (@, k) =0 VO <a<ag, kK >ko(a).
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This yields (5.37). To prove (5.36), simply note that for all 0 < a < oo,

2

o0
BN Ame(T500,6) = Ami(Ti 0,0 + 2 [ i p0,1)
PK Jpak

and hence

2 00
8.12) &%k (00,k) < ”LK/ Ldip(0.1) YO <a<ag, k> Ko(@).
0

pak
Now, proceed as with (8.2) to obtain the claimed assertion. [J

8.3. Proofs of Lemmas 8.1 and 8.2.

PROOF OF LEMMA 8.1. A Taylor expansion of the exponential function

yields
EX (exp[ [ V(X(r))])
(8.13) =’§)/0 dn /tl diy - N dt,
x EX(V(X(t)V (X (12) X -+ x V(X (t2))).
But,

[Tan [Tan e [T an BV @V O@) x - x VX @)

1 In—1

_ Z/o di p(yi —x,1)V (1)

yleZd
o0
X Z/ dry p(y2 — y1,2 = 1)V (y2)
ypezd 1
0
(8.14) XX Y dty POy = Yn—12tn — ta=1)V (¥
Ya€Z4 n-1
=Y Gi—0VO) Y. Grr—yDV(n)
y1ezd yeZd
X X Z G(yn — yn—1)V(yn)
yn€Zd

<1V 5%-
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Substituting this into (8.13) and summing the geometric series, we arrive at the
assertion claimed in (8.4). [

PROOF OF LEMMA 8.2. Using the Fourier representation of the transition
kernel [recalling (2.14)]

(8.15) PB (x, l) — %dk e—ﬁt(ﬁ(k)e—ik.x

and expanding the exponential function in a Taylor series, we find that

T s+ai3
Eé(’oY<exp[a/ ds/ ! dt pg(Y (1) —X(s),t—s)})
’ 0 s

00 T T T
:Za”/ dsl/ dsz~--/ ds,
n=0 0 S1 Sn—1

sl+u/c3 s2+a/(3 s,l+a/(3
(8.16) x/ dt1f dn f dt,
s K Sn

1 2

x @ dky @ dky --- P dk, exp[—ﬁ (t;i —si)pk -)}
% 1% f]g /2::] J J J
x EY (exp[—i > kj- Y(z,-)DEg‘ (exp[i > kj- X(sj)D.

Jj=1 Jj=1
Here, to factorize the two expectations, we have used the fact that the random
walks X and Y are independent. By symmetry of X and Y, these two expecta-
tions are real-valued. An explicit computation shows that the second expectation
is strictly positive. (Use the fact that the s; are ordered and that X has independent
increments so that the expectation factors into a product.) The first expectation is
clearly less than or equal to 1. Hence, the above expression can be bounded from
above by the same expression with Y replaced by 0. This, in turn, yields (8.6). [

8.4. Proof of Lemma 5.8. 'We begin by noting two facts. First, define

A (T'; k)

(8.17) 5

1 X vy T 00
= ?logEO (CXP[F/O dsfs dt ppc(X (1) — X (s), 1 — s)})
and

(8.18) Afy () = limsup Agui(T'; k).
T

— 00
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By splitting the second integral in the right-hand side of (8.17) into a diagonal,
a variational and an off-diagonal part (in accordance with Lemmas 5.4-5.6), ap-
plying Holder’s inequality to separate the parts [similarly as in (5.66)] and applying
Lemmas 5.4-5.6, we find that

2

(8.19) limsupk2Af, (k) < 2—,  ifd >4,
K—>00 rq
while
) U)/2 VVZ 2
(8.20) limsupkAd, (k) < — + (—) P, ifd=3.
K—>00 r3 1Y

Second, note that Lemma 6.3 for £ = 0O yields the bound

o Go(0 2
8.21) Ef (exp[ajo dt ppic (X (1), t)]) < exp[liTOG(on)} < exp[%},

provided that
(8.22) 0<a< %‘i

PROOF OF LEMMA 5.8. Using the rough bound (8.1), we have

/Tds (foodtp /(X (1) — X (s) t—s))
0 K r ’
’ (X —Xu),s —
X (/0 du ppic(X(s) W), s u))
T e
(8.23) 5/0 ds(/ dtpp/K(X(t)—X(s),t—s))
X (/ 3/za'up,o/,((X(s)—X(u),s—u))
00 T 00
+2</;3/2dupp/,((0,u)>/o dsﬁ dt pojc(X (1) — X (), —5).

Substituting this into (5.38) and applying the Cauchy—Schwarz inequality, we find
that

(8.24) Arem(T: 1) < AD (T 60) + AZL (T3 ),
where
1 20y (T
1 . X
AD (T;60) = ﬁlogEo (exp|: 3 /0 ds
s+/c3/2

(8.25) dt ppsc(X (1) — X (s),1 — s))

(]
“(

o duppjc(X(s) — X (u),s — u))])
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and
1 1))/2 4]/ o
AZ (T k)= T log BX (exp[—Kz <7 /Km du pp (0, u)>

(8.26) M
X/O dsK dtpp/K(X(t)—X(s),t—s)D.

To prove Lemma 5.8, it will be enough to show that

(8.27) lim «2limsup AY) (T: k) =0, i=1,2.
K—> 00

rem
T—o00

Since for d > 3,
8.28 oy 0 0
(8.28) 7_//{3/2 uppic0,u) — as Kk — 00,

(8.27) for i = 2 follows from (8.17)—(8.20) with v replaced by v times the integral
in (8.28). To prove (8.27) for i = 1, we split the integral in the right-hand side of
(8.25) as follows:

T [T/2370  [T/237 k232
(8.29) / ds=< >+ D )
0 k=1 k=1

even odd

(k—1)2«3/2

Note that the summands in each of the two sums are i.i.d. Hence, substituting
(8.29) into (8.25) and applying the Cauchy—Schwarz inequality, we find that

AW (T k)

rem

3

T )23/ 4 22
< %logﬂﬂg <exp|:%/ ds
(8.30) oo

X </:+K3/2 dt pojc(X (1) — X (s), 1 — s)>

X </:_K3/2 duppic(X(s) — X (u),s — u))})

Letting T — oo and applying Jensen’s inequality, we arrive at

lim sup AL (T; k)

rem
T—o0
1 41))/3 32
831) < Wlogﬂzg{g (exp|:72/(3/2</0 dt ppe (X (D), t))

3/2

)

where we use the fact that the increments of X over the time intervals [s, s + /2]
and [s — k/2, 5] are independent in order to replace the expectation over the single
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random walk X by an expectation over the two independent random walks X, Y.
Since for d > 3,

4vy3 o0 guy3 [o°
72;(3/2/0 du ppc(Y(u),u) < /(37/0 du pp(0, u)
(8.32)
8vy3
= Y —-0 as Kk — 00,

we may apply (8.21) and (8.22) with « equal to the left-hand side of (8.32) to see
that for large «,

1 v 2 8uy? [o©

Finally, we may apply (8.21) and (8.22) once more, this time with & = 16vy?3 /rgx3/2,
to obtain that for large «,
(8.34) limsup A (T k) <

rem o
T—o00 8i3/2 rd

This implies (8.27) fori =1. O

1 2 (161))/3) . 4vy3

rak3/? F§K3 '
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