70 research outputs found
Cathodoluminescence of nanocrystalline Y2O3:Eu3+ with various Eu3+ concentrations
© The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.Herein a study on the preparation and cathodoluminescence of monosized spherical nanoparticles of Y2O3:Eu3+ having a Eu3+ concentration that varies between 0.01 and 10% is described. The luminous efficiency and decay time have been determined at low a current density, whereas cathodoluminescence-microscopy has been carried out at high current density, the latter led to substantial saturation of certain spectral transitions. A novel theory is presented to evaluate the critical distance for energy transfer from Eu3+ ions in S6 to Eu3+ ions in C2 sites. It was found that Y2O3:Eu3+ with 1–2% Eu3+ has the highest luminous efficiency of 16lm/w at 15keV electron energy. Decay times of the emission from 5D0 (C2) and 5D1 (C2) and 5D0 (S6) levels were determined. The difference in decay time from the 5D0 (C2) and 5D1 (C2) levels largely explained the observed phenomena in the cathodoluminescence-micrographs recorded with our field emission scanning electron microscope
Cathodoluminescence of Double Layers of Phosphor Particles
This article has been made available through the Brunel Open Access Publishing Fund.We present radiance measurements of particle layers of ZnO:Zn, Y2O3:Eu and Y2O2S:Eu bombarded with electrons at anode voltages between 1 and 15 kV. The layers described in this work refer to single component layers, double layers and two component mixtures. The phosphor layers are deposited on ITO-coated glass slides by settling; the efficiency of the cathodoluminescence is determined by summing the radiances and luminances in the reflected and transmitted modes respectively. The efficiency of a double layer of Y2O3:Eu on top of ZnO:Zn at high electron energy is significantly larger than the efficiency of a corresponding layer in which the two components are mixed. This result is interpreted in terms of the penetration-model, which predicts a larger efficiency for a high-voltage phosphor on top of a low-voltage phosphor. When a layer of the low-voltage phosphor ZnO:Zn is on top of the high-voltage phosphor Y2O3:Eu, we also observe a higher efficiency than that of the corresponding layer with both components mixed. In this case the efficiency increases due to suppression of charging in the Y2O3:Eu layer. Double layers of ZnO:Zn and Y2O2S:Eu did not show enhanced efficiency, because the size of the Y2O2S:Eu particles was too large to evoke the penetration effect.
© The Author(s) 2014. Published by ECS
Recommended from our members
Cathodoluminescence studies of phosphors in a scanning electron microscope
Cathodoluminescence studies are reported of phosphors in a field emission scanning electron microscope (FESEM). A number of phosphor materials have been studied and exhibited a pronounced comet-like structure at high scan rates, because the particle continued to emit light after the beam had moved onto subsequent pixels. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. This technique provides a simple and convenient way to study the decay times of individual particles
Symmetry-related transitions in the spectrum of nanosized Cubic Y2O3: Tb3+
Herein the preparation and cathodoluminescence of nanoparticles of cubic Y2O3:Tb3+ having Tb3+ concentration varying between 0.1 and 10 Mol% are described. The cathodoluminescence spectra were recorded with a high resolution spectrometer, which enabled the identification of Tb3+ lines with C2 and S6 symmetry: the lines at 542.8 nm and 544.4 nm were designated as 5D4→7F5 (C2) and 5D4→7F5 (S6) respectively. The critical distance for energy transfer from Tb3+ ions at S6 lattice sites to Tb3+ ions at C2 lattice sites was found to be >1.7 nm. At the greater distances which prevail at low Tb3+ concentration, this energy transfer virtually stops. From cathodoluminescence spectra recorded in a scanning transmission electron microscope it was concluded that this energy transfer also did not take place if the temperature was reduced below 102 K. The efficiency of the cathodoluminescence of 1% Y2O3:Tb3+ was 6 lm/w at a beam voltage of 15 kV. The decay time of the 5D4→7F5 (C2) transition was substantially shorter than that of the 5D4→7F5 (S6) transition at low Tb3+ concentrations. The decay behavior of the cathodoluminescence images in a field emission scanning electron microscope has been explained in terms of phosphor saturation.We are grateful to the EPSRC and the Technology Strategy Board (TSB) for funding the PURPOSE (TP11/MFE/6/I/AA129F; EPSRCTS/G000271/1) and CONVERTED (JeS no. TS/1003053/1) programs. We are also grateful to the TSB for funding the CONVERT
program
Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+
Herein the photoluminescence spectra of nanosized cubic Y2O3:Tb3+ having Tb3+ concentrations varying between 0.1 and 10 Mol% are described. Low temperature cathodoluminescence spectra from these materials recorded in a scanning transmission electron microscope are presented and discussed. By studying the photoluminescence-spectra recorded at room temperature and focused on the 5D4→7F5 (C2) and 5D4→7F5 (C3i) transitions, at 542.8 and 544.4 nm respectively, it was found that the critical distance for energy transfer from Tb3+ ions at C3i lattice sites to Tb3+ ions at C2 lattice sites was 1.7 nm; at distances >1.7 nm, which prevail at low Tb3+ concentration, this energy transfer virtually stops. The gradual change of the excitation spectra upon increasing the Tb3+ concentration is also explained in terms of energy transfer from Tb3+ at C3i sites to Tb3+ at C2 sites. Cathodoluminescence spectra recorded at low temperatures with the scanning transmission electron microscope provided additional evidence for this radiationless energy transfer.We are grateful to the EPSRC and the Technology Strategy Board (TSB) for funding the PURPOSE (TP11/MFE/6/I/AA129F; EPSRCTS/G000271/1) and CONVERTED (JeS no. TS/1003053/1) programs. The TSB funded the CONVERT program
Recommended from our members
Laser-Activated Luminescence of BaAl2O4:Eu
© 2020 The Author(s). In this article the laser-activated (LA) luminescence of BaAl2O4 doped with 3 mol% Eu2+ and SrAl2O4 doped with 700 ppm Eu2+ is described. The LA spectrum of BaAl2O4:Eu did not show any emission from Eu2+, but rather luminescence from the Eu3+ ion. This surprising result is explained in terms of ionization of the excited Eu2+ ions (photo-ionization), while the freed electrons are trapped in an excited state of the F-centre: this is considered to be a deep trap. The temperature of the ferroelectric-paraelectric phase transition in BaAl2O4 has been determined at ≈180 °C from the Raman spectra recorded at various temperatures.PURPOSE (TP11/MFE/6/1/AA129F; EPSRC TS/G000271/1) and CONVERTED (JeS no. TS/1003053/1), PRISM (EP/N508974/1) and FAB3D programs
Recommended from our members
Reassignment of electronic transitions in the laser-activated spectrum of nanocrystalline Y2O3:Er3+
A.C.Electroluminescent Lamps: Shedding some light on their mysteries
A.C.powder electroluminescent lamps have been known and used for many years, but their mechanism of operation is still debated. Many thousands of phosphors are known, but the vast majority are not electroluminescent. A number of materials do exhibit the effect. Of these, however, ZnS doped with Cu is absolutely in a class of its own, and is the only material from which viable lamps can be made. In this work studies have been made of the performance of devices under a range of pulsed and continuous excitation conditions and new hypotheses presented which attempt to explain the behavior of this unique material
New Developments in Cathodoluminescence Spectroscopy for the Study of Luminescent Materials
© 2017 by the authors. Herein, we describe three advanced techniques for cathodoluminescence (CL) spectroscopy that have recently been developed in our laboratories. The first is a new method to accurately determine the CL-efficiency of thin layers of phosphor powders. When a wide band phosphor with a band gap (Eg > 5 eV) is bombarded with electrons, charging of the phosphor particles will occur, which eventually leads to erroneous results in the determination of the luminous efficacy.
To overcome this problem of charging, a comparison method has been developed, which enables accurate measurement of the current density of the electron beam. The study of CL from phosphor specimens in a scanning electron microscope (SEM) is the second subject to be treated. A detailed description of a measuring method to determine the overall decay time of single phosphor crystals in a SEM without beam blanking is presented. The third technique is based on the unique combination of microscopy and spectrometry in the transmission electron microscope (TEM) of Brunel University London (UK). This combination enables the recording of CL-spectra of nanometre-sized specimens and determining spatial variations in CL emission across individual particles by superimposing the scanning TEM and CL-images.We are grateful to the EPSRC and Technology Strategy Board (TSB) for funding the PURPOSE (TP11/MFE/6/1/AA129F; EP-SRC TS/G000271/1) and CONVERTED (JeS No. TS/1003053/1), PRISM (EP/N508974/1) and FAB3D programs. We are finally grateful to the TSB for funding the CONVERT program
- …