583 research outputs found

    Equine Arteritis Virus Subgenomic RNA Transcription: UV Inactivation and Translation Inhibition Studies

    Get PDF
    AbstractThe expression of the genetic information of equine arteritis virus (EAV), an arterivirus, involves the synthesis of six subgenomic (sg) mRNAs. These are 5′ and 3′ coterminal since they are composed of a leader and a body sequence, which are identical to the 5′ and 3′ ends of the genome, respectively. Previously, it has been suggested thatcis-splicing of a genome-length precursor RNA is involved in their synthesis. This was reevaluated in a comparative analysis of the sg RNA synthesis of EAV, the coronavirus mouse hepatitis virus (MHV), and the alphavirus Sindbis virus. UV transcription mapping showed that the majority of the EAV sg RNAs made at later stages of infection is not derived from a genome-length precursor. However, complete independence of sg RNA synthesis from that of genomic RNA was never observed during the course of infection. The possibility that this resulted from UV irradiation-induced effects on the synthesis of the viral replicase was investigated by inhibiting translation using cycloheximide. For EAV, ongoing protein synthesis was found to be more important for the synthesis of sg RNA than for that of genomic RNA. In general, MHV transcription was extremely sensitive to translation inhibition, whereas EAV genomic RNA synthesis became independent ofde novoprotein synthesis late in infection

    Spurious diffusion in particle simulations of the Kolmogorov flow

    Full text link
    Particle simulations of the Kolmogorov flow are analyzed by the Landau-Lifshitz fluctuating hydrodynamics. It is shown that a spurious diffusion of the center of mass corrupts the statistical properties of the flow. The analytical expression for the corresponding diffusion coefficient is derived.Comment: 10 pages, no figure

    Smart continence care for people with profound intellectual and multiple disabilities:Protocol for a cluster randomized trial and trial-based economic evaluation

    Get PDF
    Background: People with profound intellectual and multiple disabilities (PIMD) cannot communicate the need to change their incontinence products. The smart continence care (SCC) product Abena Nova signals caregivers when change is needed. This provides the opportunity for more person-centered care, increased quality of life, and a decreased number of leakages. However, there is a need for evidence of the effectiveness and cost-effectiveness of such technology compared with regular continence care (RCC) for people with PIMD. Objective: This paper presents the research protocol for an effectiveness and cost-effectiveness study with people with PIMD living in long-term care facilities in the Netherlands. Methods: A cluster randomized trial will be conducted in 3 consecutive waves across 6 long-term care providers for people with disabilities and 160 participants with PIMD. Long-term care providers are randomized at a 1:1 ratio, resulting in an intervention group and a group continuing RCC. The intervention group will receive implementation guidance and use SCC for 3 months; the other group will continue their RCC as usual and then switch to SCC. This study consists of three components: effectiveness study, economic evaluation, and process evaluation. The primary outcome will be a change in the number of leakages. The secondary outcomes are quality of life, the difference in the number of changes, the work perception of caregivers, cost-effectiveness, and cost utility. Data collection will occur at T0 (baseline), T1 (6 weeks), T2 (12 weeks), and T3 (9-month follow-up) for the first 2 intervention groups. An intention-to-treat analysis will be performed. The economic evaluation will be conducted alongside the trial from the societal and long-term care provider perspectives. Qualitative data collection through interviews and field notes will complement these quantitative results and provide input for the process evaluation. Results: This research was funded in December 2019 by ZonMw, the Netherlands Organization for Health Research and Development. As of June 2022, we enrolled 118 of the 160 participants. The enrollment of participants will continue in the third and fourth quarters of 2022. Conclusions: This study will provide insights into the effectiveness and cost-effectiveness of SCC for people with PIMD, allowing long-term care providers to make informed decisions about implementing such a technology. This is the first time that such a large-scale study is being conducted for people with PIMD

    Neurofibromatosis type 1 associated low grade gliomas:A comparison with sporadic low grade gliomas

    Get PDF
    AbstractNeurofibromatosis type 1 (NF1) is an autosomal dominant disorder, associated with a variable clinical phenotype including café-au-lait spots, intertriginous freckling, Lisch nodules, neurofibromas, optic pathway gliomas and distinctive bony lesions. NF1 is caused by a mutation in the NF1 gene, which codes for neurofibromin, a large protein involved in the MAPK- and the mTOR-pathway through RAS-RAF signalling.NF1 is a known tumour predisposition syndrome, associated with different tumours of the nervous system including low grade gliomas (LGGs) in the paediatric population. The focus of this review is on grade I pilocytic astrocytomas (PAs), the most commonly observed histologic subtype of low grade gliomas in NF1. Clinically, these PAs have a better prognosis and show different localisation patterns than their sporadic counterparts, which are most commonly associated with a KIAA1549:BRAF fusion.In this review, possible mechanisms of tumourigenesis in LGGs with and without NF1 will be discussed, including the contribution of different signalling pathways and tumour microenvironment. Furthermore we will discuss how increased understanding of tumourigenesis may lead to new potential targets for treatment

    A Case Study in the Future Challenges in Electricity Grid Infrastructure

    Get PDF
    The generation by renewables and the loading by electrical vehicle charging imposes severe challenges in the redesign of today’s power supply systems. Indeed, accommodating these emerging power sources and sinks requires traditional power systems to evolve from rigid centralized unidirectional architectures to intelligent decentralized entities allowing a bidirectional power flow. In the case study proposed by ENDINET, we investigate how the penetration of solar panels and of battery charging stations on large scale affects the voltage quality and loss level in a distribution network servicing a residential area in Eindhoven, NL. In our case study we take the average household load during summer and winter into account and consider both a radial and meshed topology of the network. Our study results for both topologies considered in a quantification of the levels of penetration and a strategy for electrical vehicle loading strategy that meet the voltage and loss requirements in the network

    A model for estimating the health economic impact of earlier diagnosis of chronic thromboembolic pulmonary hypertension

    Full text link
    Background Diagnostic delay of chronic thromboembolic pulmonary hypertension (CTEPH) exceeds 1 year, contributing to higher mortality. Health economic consequences of late CTEPH diagnosis are unknown. We aimed to develop a model for quantifying the impact of diagnosing CTEPH earlier on survival, quality-adjusted life-years (QALYs) and healthcare costs. Material and methods A Markov model was developed to estimate lifelong outcomes, depending on the degree of delay. Data on survival and quality of life were obtained from published literature. Hospital costs were assessed from patient records (n=498) at the Amsterdam UMC - VUmc, which is a Dutch CTEPH referral center. Medication costs were based on a mix of standard medication regimens. Results For 63-year-old CTEPH patients with a 14-month diagnostic delay of CTEPH (median age and delay of patients in the European CTEPH Registry), lifelong healthcare costs were estimated at EUR 117 100 for a mix of treatment options. In a hypothetical scenario of maximal reduction of current delay, improved survival was estimated at a gain of 3.01 life-years and 2.04 QALYs. The associated cost increase was EUR 44 654, of which 87% was due to prolonged medication use. This accounts for an incremental cost-utility ratio of EUR 21 900/QALY. Conclusion Our constructed model based on the Dutch healthcare setting demonstrates a substantial health gain when CTEPH is diagnosed earlier. According to Dutch health economic standards, additional costs remain below the deemed acceptable limit of EUR 50 000/QALY for the particular disease burden. This model can be used for evaluating cost-effectiveness of diagnostic strategies aimed at reducing the diagnostic delay

    POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome

    Get PDF
    Background: Walker-Warburg syndrome (WWS) is an autosomal recessive condition characterised by congenital muscular dystrophy, structural brain defects, and eye malformations. Typical brain abnormalities are hydrocephalus, lissencephaly, agenesis of the corpus callosum, fusion of the hemispheres, cerebellar hypoplasia, and neuronal overmigration, which causes a cobblestone cortex. Ocular abnormalities include cataract, microphthalmia, buphthalmos, and Peters anomaly. WWS patients show defective O-glycosylation of α-dystroglycan (α-DG), which plays a key role in bridging the cytoskeleton of muscle and CNS cells with extracellular matrix proteins, important for muscle integrity and neuronal migration. In 20% of the WWS patients, hypoglycosylation results from mutations in either the protein O-mannosyltransferase 1 (POMT1), fukutin, or fukutin related protein (FKRP) genes. The other genes for this highly heterogeneous disorder remain to be identified. Objective: To look for mutations in POMT2 as a cause of WWS, as both POMT1 and POMT2 are required to achieve protein O-mannosyltransferase activity. Methods: A candidate gene approach combined with homozygosity mapping. Results: Homozygosity was found for the POMT2 locus at 14q24.3 in four of 11 consanguineous WWS families. Homozygous POMT2 mutations were present in two of these families as well as in one patient from another cohort of six WWS families. Immunohistochemistry in muscle showed severely reduced levels of glycosylated α-DG, which is consistent with the postulated role for POMT2 in the O-mannosylation pathway. Conclusions: A fourth causative gene for WWS was uncovered. These genes account for approximately one third of the WWS cases. Several more genes are anticipated, which are likely to play a role in glycosylation of α-DG

    Voeding van de plant via het blad

    Get PDF
    Ook via het blad kunnen aan de plant voedingsstoffen worden toegediend. Van deze wetenschap, die vooral belangrijk is met het oog op een snelle opheffing van voedingstekorten, wordt in de praktijk reeds gebruik gemaakt. De praktische uitvoering van deze mogelijkheid stuit op weinig moeilijkheden, daar de meeste land- en tuinbouwbedrijven tegenwoordig wel over sproeiwerktuigen voor de ziektebestrijding beschikken

    Identification of an alternative triglyceride biosynthesis pathway

    Get PDF
    Triacylglycerols (TAGs) are the main source of stored energy in the body, providing an important substrate pool for mitochondrial beta-oxidation. Imbalances in the amount of TAGs are associated with obesity, cardiac disease and various other pathologies 1,2. In humans, TAGs are synthesized from excess, coenzyme A-conjugated fatty acids by diacylglycerol O-acyltransferases (DGAT1 and DGAT2) 3. In other organisms, this activity is complemented by additional enzymes 4, but whether such alternative pathways exist in humans remains unknown. Here we disrupt the DGAT pathway in haploid human cells and use iterative genetics to reveal an unrelated TAG-synthesizing system composed of a protein we called DIESL (also known as TMEM68, an acyltransferase of previously unknown function) and its regulator TMX1. Mechanistically, TMX1 binds to and controls DIESL at the endoplasmic reticulum, and loss of TMX1 leads to the unconstrained formation of DIESL-dependent lipid droplets. DIESL is an autonomous TAG synthase, and expression of human DIESL in Escherichia coli endows this organism with the ability to synthesize TAG. Although both DIESL and the DGATs function as diacylglycerol acyltransferases, they contribute to the cellular TAG pool under specific conditions. Functionally, DIESL synthesizes TAG at the expense of membrane phospholipids and maintains mitochondrial function during periods of extracellular lipid starvation. In mice, DIESL deficiency impedes rapid postnatal growth and affects energy homeostasis during changes in nutrient availability. We have therefore identified an alternative TAG biosynthetic pathway driven by DIESL under potent control by TMX1. </p
    corecore