24 research outputs found

    Bacterial elicitors of the plant immune system : an overview and the way forward

    Get PDF
    A wide variety of root-associated bacterial mutualist species sensitize plant defenses to counteract pathogen infections. These beneficial bacteria produce myriad molecules that induce systemic resistance (ISR) in plants. Here, we review pioneering and recent studies describing the role of different ISR elicitors, including quorum sensing molecules, lipids, oligosaccharides, proteins, iron-chelating molecules, and volatiles. The concepts and differences between ISR and other plant immune responses, such as Localized Acquired Resistance (LAR) and Systemic Acquired Resistance (SAR) are also explored. We also highlight the necessity of understanding plant responses to such a wide chemical diversity of molecules. Finally, we discuss the urgency of using such elicitors to develop more sustainable agriculture by helping plant crops defend themselves from invading pathogens

    Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.micres.2018.01.005 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/A plant microbiome includes a microbial community that typically interacts extensively with a plant. The plant microbiome can survive either inside or outside of plant tissues, performing various plant beneficial activities including biocontrol of potential phytopathogens and promotion of plant growth. An important part of the plant microbiome includes plant growth-promoting bacteria (PGPB) that commonly reside in the rhizosphere and phyllosphere, and as endophytic bacteria (inside of plant tissues). As new plant microbiome-manipulating strategies have emerged in recent years, we have critically reviewed relevant literature, chiefly from the last decade. We have analysed and compared the rhizosphere, phyllosphere and endosphere as potential ecosystems for manipulation, in order to improve positive interactions with the plant. In addition, many studies on the bioengineering of the endophyte microbiome and its potential impact on the core microbiome were analysed with respect to five different strategies, including host mediated and multi-generation microbiome selection, inoculation into soil and rhizosphere, inoculations into seeds or seedlings, tissue atomisation and direct injection into tissues or wounds. Finally, microbiome engineering presents a feasible strategy to solve multiple agriculture-associated problems in an eco-friendly way.Fundación Santoy

    Agroecological management of the grey mould fungus Botrytis cinerea by plant growth-promoting bacteria

    Get PDF
    Botrytis cinerea is the causal agent of grey mould and one of the most important plant pathogens in the world because of the damage it causes to fruits and vegetables. Although the application of botrycides is one of the most common plant protection strategies used in the world, the application of plant-beneficial bacteria might replace botrycides facilitating agroecological production practices. Based on this, we reviewed the different stages of B. cinerea infection in plants and the biocontrol mechanisms exerted by plant-beneficial bacteria, including the well-known plant growth-promoting bacteria (PGPB). Some PGPB mechanisms to control grey mould disease include antibiosis, space occupation, nutrient uptake, ethylene modulation, and the induction of plant defence mechanisms. In addition, recent studies on the action of anti-Botrytis compounds produced by PGPB and how they damage the conidial and mycelial structures of the pathogen are reviewed. Likewise, the advantages of individual inoculations of PGPB versus those that require the joint action of antagonist agents (microbial consortia) are discussed. Finally, it should be emphasised that PGPB are an excellent option to prevent grey mould in different crops and their use should be expanded for environmentally friendly agricultural practices

    Recent developments in the application of plant growth-promoting drought adaptive rhizobacteria for drought mitigation

    Get PDF
    Drought intensity that has increased as a result of human activity and global warming poses a serious danger to agricultural output. The demand for ecologically friendly solutions to ensure the security of the world’s food supply has increased as a result. Plant growth-promoting rhizobacteria (PGPR) treatment may be advantageous in this situation. PGPR guarantees the survival of the plant during a drought through a variety of processes including osmotic adjustments, improved phytohormone synthesis, and antioxidant activity, among others and these mechanisms also promote the plant’s development. In addition, new developments in omics technology have improved our understanding of PGPR, which makes it easier to investigate the genes involved in colonizing plant tissue. Therefore, this review addresses the mechanisms of PGPR in drought stress resistance to summarize the most current omics-based and molecular methodologies for exploring the function of drought-responsive genes. The study discusses a detailed mechanistic approach, PGPR-based bioinoculant design, and a potential roadmap for enhancing their efficacy in combating drought stress

    Trichoderma species : our best fungal allies in the biocontrol of plant diseases : a review

    Get PDF
    Biocontrol agents (BCA) have been an important tool in agriculture to prevent crop losses due to plant pathogens infections and to increase plant food production globally, diminishing the necessity for chemical pesticides and fertilizers and offering a more sustainable and environmentally friendly option. Fungi from the genus Trichoderma are among the most used and studied microorganisms as BCA due to the variety of biocontrol traits, such as parasitism, antibiosis, secondary metabolites (SM) production, and plant defense system induction. Several Trichoderma species are well-known mycoparasites. However, some of those species can antagonize other organisms such as nematodes and plant pests, making this fungus a very versatile BCA. Trichoderma has been used in agriculture as part of innovative bioformulations, either just Trichoderma species or in combination with other plant-beneficial microbes, such as plant growth-promoting bacteria (PGPB). Here, we review the most recent literature regarding the biocontrol studies about six of the most used Trichoderma species, T. atroviride, T. harzianum, T. asperellum, T. virens, T. longibrachiatum, and T. viride, highlighting their biocontrol traits and the use of these fungal genera in Trichoderma-based formulations to control or prevent plant diseases, and their importance as a substitute for chemical pesticides and fertilizers

    Rhizobiome Transplantation: A Novel Strategy beyond Single-Strain/Consortium Inoculation for Crop Improvement

    No full text
    The growing human population has a greater demand for food; however, the care and preservation of nature as well as its resources must be considered when fulfilling this demand. An alternative employed in recent decades is the use and application of microbial inoculants, either individually or in consortium. The transplantation of rhizospheric microbiomes (rhizobiome) recently emerged as an additional proposal to protect crops from pathogens. In this review, rhizobiome transplantation was analyzed as an ecological alternative for increasing plant protection and crop production. The differences between single-strain/species inoculation and dual or consortium application were compared. Furthermore, the feasibility of the transplantation of other associated micro-communities, including phyllosphere and endosphere microbiomes, were evaluated. The current and future challenges surrounding rhizobiome transplantation were additionally discussed. In conclusion, rhizobiome transplantation emerges as an attractive alternative that goes beyond single/group inoculation of microbial agents; however, there is still a long way ahead before it can be applied in large-scale agriculture

    Rhizobiome engineering : unveiling complex rhizosphere interactions to enhance plant growth and health

    No full text
    Crop plants are affected by a series of inhibitory environmental and biotic factors that decrease their growth and production. To counteract these adverse effects, plants work together with the microorganisms that inhabit their rhizosphere, which is part of the soil influenced by root exudates. The rhizosphere is a microecosystem where a series of complex interactions takes place between the resident microorganisms (rhizobiome) and plant roots. Therefore, this study analyzes the dynamics of plant-rhizobiome communication, the role of exudates (diffusible and volatile) as a factor in stimulating a diverse rhizobiome, and the differences between rhizobiomes of domesticated crops and wild plants. The study also analyzes different strategies to decipher the rhizobiome through both classical cultivation techniques and the so-called “omics” sciences. In addition, the rhizosphere engineering concept and the two general strategies to manipulate the rhizobiome, i.e., top down and bottom up engineering have been revisited. In addition, recent studies on the effects on the indigenous rhizobiome of inoculating plants with foreign strains, the impact on the endobiome, and the collateral effects on plant crops are discussed. Finally, understanding of the complex rhizosphere interactions and the biological repercussions of rhizobiome engineering as essential steps for improving plant growth and health is proposed, including under adverse conditions

    Teamwork to Survive in Hostile Soils: Use of Plant Growth-Promoting Bacteria to Ameliorate Soil Salinity Stress in Crops

    No full text
    Plants and their microbiomes, including plant growth-promoting bacteria (PGPB), can work as a team to reduce the adverse effects of different types of stress, including drought, heat, cold, and heavy metals stresses, as well as salinity in soils. These abiotic stresses are reviewed here, with an emphasis on salinity and its negative consequences on crops, due to their wide presence in cultivable soils around the world. Likewise, the factors that stimulate the salinity of soils and their impact on microbial diversity and plant physiology were also analyzed. In addition, the saline soils that exist in Mexico were analyzed as a case study. We also made some proposals for a more extensive use of bacterial bioinoculants in agriculture, particularly in developing countries. Finally, PGPB are highly relevant and extremely helpful in counteracting the toxic effects of soil salinity and improving crop growth and production; therefore, their use should be intensively promoted

    Plant Growth Stimulation by Microbial Consortia

    No full text
    Plant-associated microorganisms play an important role in agricultural production. Although various studies have shown that single microorganisms can exert beneficial effects on plants, it is increasingly evident that when a microbial consortium—two or more interacting microorganisms—is involved, additive or synergistic results can be expected. This occurs, in part, due to the fact that multiple species can perform a variety of tasks in an ecosystem like the rhizosphere. Therefore, the beneficial mechanisms of plant growth stimulation (i.e., enhanced nutrient availability, phytohormone modulation, biocontrol, biotic and abiotic stress tolerance) exerted by different microbial players within the rhizosphere, such as plant-growth-promoting bacteria (PGPB) and fungi (such as Trichoderma and Mycorrhizae), are reviewed. In addition, their interaction and beneficial activity are highlighted when they act as part of a consortium, mainly as mixtures of different species of PGPB, PGPB–Mycorrhizae, and PGPB–Trichoderma, under normal and diverse stress conditions. Finally, we propose the expansion of the use of different microbial consortia, as well as an increase in research on different mixtures of microorganisms that facilitate the best and most consistent results in the field
    corecore