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A B S T R A C T   

A wide variety of root-associated bacterial mutualist species sensitize plant defenses to counteract pathogen 
infections. These beneficial bacteria produce myriad molecules that induce systemic resistance (ISR) in plants. 
Here, we review pioneering and recent studies describing the role of different ISR elicitors, including quorum 
sensing molecules, lipids, oligosaccharides, proteins, iron-chelating molecules, and volatiles. The concepts and 
differences between ISR and other plant immune responses, such as Localized Acquired Resistance (LAR) and 
Systemic Acquired Resistance (SAR) are also explored. We also highlight the necessity of understanding plant 
responses to such a wide chemical diversity of molecules. Finally, we discuss the urgency of using such elicitors 
to develop more sustainable agriculture by helping plant crops defend themselves from invading pathogens.   

1. Introduction 

Plants are sessile organisms surrounded by a great diversity of 
macro- and micro-organisms, where they may have beneficial, neutral, 
or pathogenic relationships. In the latter case, plant pathogens, which 
usually include viruses, bacteria, nematodes, fungi, and insects, can 
damage the plant and cause various symptoms that damage its health 
and even cause death (Besset-Manzoni et al., 2018; Lemanceau et al., 
2017). In the case of vegetable crops, pathogens can cause huge eco-
nomic losses, which can be counted in billions of dollars. In some cases, 
up to 70% of crops are lost (Savary et al., 2019; Syed Ab Rahman et al., 
2018). Clearly, this is an area of opportunity to improve plant produc-
tion in a sustainable way, since the first option to reduce or eliminate 
diseases in crops includes the use of toxic agrochemicals (Shailendra 
Singh, 2015). Therefore, understanding plant-microorganism in-
teractions (whether pathogenic or beneficial) is urgent, both economi-
cally and environmentally. 

Upon detection of potential phytopathogens, plants activate their 
systemic acquired resistance (SAR), among a plethora of defense 

responses, a complex process that triggers a series of reactions that turn 
on the plant’s immune system (Henry et al., 2013). In this way, the 
pattern recognition receptors (PPR) of plant cells recognize various 
pathogen-associated molecular patterns (PAMPs), thus are one of the 
first filters for the recognition of a potential pathogen (Henry et al., 
2012; Macho and Zipfel, 2014). The second filter is the NOD-like 
intracellular immune receptor (NLR). These receptors recognize 
(directly or indirectly) virulence effectors secreted by pathogens into 
plant host cells, where effector molecules can subsequently trigger the 
immune system of the plant host. Understanding of pathogen recogni-
tion mechanisms and the molecular responses and defense signals that 
plants develop when encountering pathogens has come a long way in 
recent years, owing to molecular techniques and the generation of mu-
tants (Cheng et al., 2017; Rodriguez et al., 2019; Yu et al., 2021); 
however, the discovery of some receptors has been left behind, and only 
a few have been characterized in a few plant species (Chen et al., 2020). 

Plants can also recognize non-pathogenic microorganisms that could 
interact with them and provide benefits through mutualistic or symbi-
otic processes. Thus, plants detect microbe-associated molecular 
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patterns (MAMPs), to which they respond by activating signaling 
pathways to activate their immune system, a process better known as 
induction of systemic resistance or ISR (Olanrewaju et al., 2019; Wu 
et al., 2014; Yu et al., 2019). Therefore, the ISR can be triggered by a 
series of quorum sensing molecules, rhamnolipids, protein patterns, 
antibiotic compounds, among others, which are usually produced by 
beneficial microorganisms (Kloepper et al., 2004; Pršić and Ongena, 
2020), including bacteria. 

Elicitors can be classified as general or specific (Fig. 1). The general 
elicitors are chemical compounds produced by non-pathogenic micro-
organisms, as well as MAMPs themselves. However, non-specific elici-
tors can also be PAMPs or Damage-Associated Molecular Patterns 
(DAMPs) resulting from signals caused by the action of a pathogenic 
agent, such as insects or some herbivores (Thoms et al., 2021). The 
perception by a plant of general elicitors triggers different reactions in 
the plant, activating the so-called basal resistance or PAMP-Activated 
Immunity (PTI). Eventually, secondary innate immunity or 
effector-triggered immunity (ETI) responds to specific elicitors produced 
by pathogens that produce effector proteins called avirulence proteins 
(Avr) (Dodds et al., 2009). This specificity is provided by the R proteins 
of plants that recognize attacker-specific effectors (Choudhary et al., 
2007). 

2. Localized acquired resistance (LAR), systemic acquired 
resistance (SAR) and induced systemic resistance (ISR) 

The SAR and ISR are two parallel process that differentiate on the 
chemical nature of the elicitor which trigger a “signal” to give a systemic 
defense response at a point other than where the plant is infested by the 
pathogen. When resistance is established in the tissue surrounding the 
site of the initial infection, a type of resistance called Localized Acquired 
Resistance (LAR) is recognized (Henry et al., 2012). Further, the 

production of enzymes, such as chitinases and glucanases, by pathogens 
triggers the SAR response, mainly inducing the synthesis of 
pathogenesis-related (PR) proteins (Astha et al., 2019; Bhardwaj et al., 
2021). On the other hand, beneficial organisms are known not to trigger 
such PR protein production. In addition, pathogens trigger SAR through 
signals that involve hormones such as salicylic acid (SA), while ISR re-
sponds through jasmonic acid (JA) and ethylene. Downstream, the 
participation of the protein NPR1 (an ankyrin-repeat family protein) is 
important for transmitting the signal where both signaling pathways 
coincide, whether they are SAR or ISR (Chen et al., 2020). According to 
Dong (2004), a redox change transforms NPR1 oligomers into mono-
mers under the influence of SA. Subsequently, these NPR1-derived 
monomers are transported from the cytoplasm to the nucleus, where 
they interact with transcription factors (TGA) specific for the expression 
of PR genes. Thus, the NPR1 protein is a key regulatory factor found in 
pathways where multiple defense pathways coincide, such as SAR and 
ISR. During previous studies, it has been proposed that some pathogens 
can activate plant host defenses through cross-linked pathways 
depending on their trophic state, whether bio- or necrotrophic (Glaze-
brook, 2005). A general view of the SAR and ISR responses is provided in 
Fig. 2. 

Loon (2007) proposed another way to define induced resistance, 
either SAR or ISR, by alluding to the induced state as the "enhanced 
defensive capacity (EDC)" of the plant. In this state, the plant faces a 
series of challenges that allows it to defend itself and survive the attack 
of pathogens; thus, knowledge of the mechanisms and elicitor molecules 
produced by beneficial microorganisms could have a great impact on the 
suppression of plant related and sustainable agriculture. 

3. Elicitors by beneficial bacteria 

Bacteria that promote the growth, development, or health of plants 

Fig. 1. Description of functionality of general 
and specific elicitors produced by diverse macro 
and microorganisms, pathogenic and non- 
pathogenic (beneficial microbes). Chemical 
are recognized by unknown receptors, while 
PPRs are receptors of MAMPs. MAMPS: 
Microbe-Associated Molecular Patterns; 
DAMPs: Damage-Associated Molecular Pat-
terns; PAMPSs: Pathogen-Associated Molecular 
Patterns; PPRS: Pattern Recognition Receptors; 
PTI: PAMP-Activated Immunity; ETI: Effector 
Triggered Immunity. Adapted and redrawn 
from (Henry et al., 2012).   
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are commonly called plant growth-promoting bacteria (PGPB) (Adeleke 
et al., 2021; Massa et al., 2022). Plant growth-promoting bacteria can 
associate with plants and form part of their beneficial microbiome with 
different points of interaction, mainly the phyllosphere, endosphere, or 
rhizosphere. Depending on the microecosystem inhabited, they can be 
classified as phyllospheric bacteria, endophytes, or rhizobacteria (del 
Barrio-Duque et al., 2019; Schlechter et al., 2019; Srivastava et al., 
2021). Mechanisms for stimulating plant growth can be classified as 
direct or indirect. In the direct case, bacteria produce a series of hor-
mones or compounds that improve the acquisition of nutrients in the 
plant. An indirect way of improving plant growth and health involves 
inhibiting the damaging effects of pathogens, either by restricting their 
growth through the production of antibiotic compounds or by stimu-
lating the plant’s immune system. (Bhattacharyya and Jha, 2012; Nas-
cimento et al., 2020). 

3.1. Cyclic lipopeptides 

Cyclic lipopeptides (CLPs) are molecules with antibiotic activity that 
are produced as a part of the secondary metabolism of a wide variety of 
bacteria. Species from genera such as Actinomyces, Streptomyces, Bacillus, 
and Pseudomonas have been widely studied for their production of such 
metabolic molecules (Saravanakumar et al., 2019; Villa-Rodriguez et al., 
2021). According to Schneider et al. (2014), CLPs are composed of a 
lipid tail attached to a short oligopeptide that cyclizes to form a lactam 
or lactone-type ring, either between an amino acid and an amino group 
or hydroxyl containing a fatty acid residue or between two amino acids 
in the amino acid chain. 

Previous study enlisted different CLPs produced mainly by Bacillus 
and Pseudomonas (Pršić and Ongena,2020). For example, strains of 
B. amyloliquefaciens produce surfactin, mycosubtilin, fengycin, and 
iturines, which induce protection in crops such as tomato, strawberry, 
cotton, and chilli pepper, against pathogens such as Colletotrichum 
gloesporioides, Botrytis cinerea, Magnaporthe or Phytophthora cinnamomi. 
Other strains of Pseudomonas produce CLPs such as entolysin, lokisin, 
sessilin, orfamide, and massetolide A, which are involved in the pro-
tection of plants such as beans and rice against pathogenic species such 
as Rhizoctonia solani and Phytophthora infestans, etc. Some of these cyclic 
lipopeptides, and others with novel architectures, can be completely or 
semi-synthesized (Gao et al., 2022), which provides a great opportunity 
for their application in agriculture as a method of direct plant protection 
against pathogens, but also as part of turning on the immune system of 
crops. 

3.2. Cyclodipeptides 

Other elicitors of ISR in plants include cyclodipeptides (CDPs), which 
are formed from two amino acids by cyclodehydration, are produced by 
various beneficial bacteria and/or potentially pathogenic strains, such 
as Pseudomonas aeruginosa, and these have also been characterized as 
ISR elicitors (Solis-Ortiz et al., 2022). For example, Wu et al. (2017) 
reported that cyclo (l-Pro-l-Pro) and cyclo (d-Pro-d-Pro) could induce 
defense responses and systemic resistance in plants such as Nicotiana 
benthamiana, and reduce symptoms of infection caused by Phytophthora 
nicotianae and tobacco mosaic virus (TMV). Here also observed that the 
application of cyclodipeptides involved the possible participation of SA 
in the signaling pathway, as well as increasing the expression levels of 
proteins such as PR-1alpha and PR-1a. Other CDPs, such as cyclo 
(l-Pro-l-Val), cyclo(l-Pro-l-Phe), and cyclo(l-Pro-l-Tyr) produced by 
Pseudomonas aeruginosa have also been associated with the stimulation 
of the growth of Arabidopsis thaliana (Ortiz-Castro et al., 2011). Recently 
found CDPs can stimulate defense responses in Arabidopsis, including by 
the induction of the expression of genes such as LOX2, which are asso-
ciated with JA production. This result indicated the possible signaling 
pathway that induces the Arabidopsis immune system through CDPs is 
JA-dependent (Solis-Ortiz et al., 2022). 

Fig. 2. A general overview of the systemic acquired resistance and induced 
systemic resistance mechanisms. Adapted from (Syed Ab Rahman et al., 2018). 
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3.3. Quorum sensing molecules and organic volatile compounds 

The metabolic process known as quorum sensing deals with the co-
ordinated regulation of different genes in a bacterial population, where 
small chemicals or peptides play a significant roles. In microorganisms 
such as Pseudomonas aeruginosa and Vibrio fischeri (gram-negative bac-
teria), molecules such as acyl homoserine lactones (AHLs) can regulate 
processes of biofilm formation or bioluminescence (Cellini et al., 2020; 
Laj et al., 2022). Likewise, AHLs are part of the interkingdom dialogue, 
and not solely part of bacteria-bacteria communication (Laj et al., 2022; 
Schikora et al., 2016), so that they can regulate plant growth stimulation 
processes, in addition to participating as immunity elicitors. 

It has recently been proposed that some AHLs produced by beneficial 
bacterial endophytes can induce responses in the plant’s defense system 
through the activation of defense-related genes. By activating ISR, the 
plant can cause structural hardening through callose production, pre-
venting easy access to potential pathogens (Pathak et al., 2022). 

The previous study identified a molecule related to the regulation of 
quorum sensing, the rhizobacterial volatile N,N- 
dimethylhexadecylamine (DMHDA), and its role in the induction of 
defense genes in Medicago truncatula (Montejano-Ramírez et al., 2020). 
DMHDA is a volatile compound found in some beneficial rhizobacteria, 
such as Arthrobacter spp. UMCV2, Sinorhizobium meliloti 1021, and 
Pseudomonas fluorescens UM270, having different biocontrol roles 
against pathogenic fungi and acting as a plant growth stimulator (del 
Carmen Orozco-Mosqueda et al., 2013; Hernández-León et al., 2015; 
Martínez-Cámara et al., 2019). However, it was interesting to note that 
this volatile could also turn on defense genes, such as MtMYC2, MtPR4, 
and MtDef2.1, those are players in the ISR pathway. Interestingly, the JA 
pathway is not involved in plant responses (Montejano-Ramírez et al., 
2020). Thus, DMHDA, which is a lipoamino acid structurally related to 
bacterial quorum sensing signals (Chung et al., 2016), is involved in ISR 
induction and is also a relevant compound mediating enhanced plant 
growth by improving nutrient acquisition (e.g., iron uptake). 

Other volatile organic compounds (VOCs) produced by bacteria that 
act as elicitors include 2,3-butanediol (2,3-BD), which is produced by 
Bacillus and Pseudomonas strains (D’Alessandro et al., 2014; Park et al., 
2018). This volatile compound was one of the first compounds described 
as a plant growth promoter, and it has recently been reported as an 
immune response elicitor (ISR) in plants. However, 2,3-BD can also 
activate SAR, as shown by the work of (Park et al., 2018), who evaluated 
the effect of 2,3-BD and observed an upregulation of genes involved in 
ROS detoxification and overexpression of PR-3, PR-4b, PR5 (TLP), PR5 
(OSM), PR6, and the non-expressor of PR1 (NPR1). During this study it 
was evaluated the role of Paenibacillus polymyxa DSM 365 in mitigating 
the cell damage caused by the plant pathogen Phytophthora parasitica 
var. Nicotianae through inoculation in leaves. Other volatile compounds 
such as tridecane or hexadecane, also produced by P. polymyxa but 
evaluated in their pure form, have been shown to be elicitors of systemic 
resistance in Arabidopsis (Park et al., 2013). Tridecane may induced an 
ISR response in plants but has a negative effect on plant growth (Ali 
et al., 2015). 

3.4. Rhamnolipids 

Rhamnolipids are biosurfactant molecules (surface-active molecules 
of microorganisms) with various industrial applications (Varjani et al., 
2021). They are produced naturally (mainly) by Pseudomonas aerugi-
nosa, although it has also been reported that Pseudomonas chlororaphis 
and certain species of Burkholderia can occasionally produce them 
(Soberón-Chávez et al., 2021). Because P. aeruginosa is a potential 
pathogen of humans and plants in some environmental situations, its 
production and application as a bioinoculant in plant research may be 
limited. However, the production of rhamnolipids as ISR elicitors has 
great potential, since its application of the pure compound has managed 
to protect Brassica napus plants against the gray mold pathogen, Botrytis 

cinerea. Even B. napus seedlings overexpressed defense genes, such as 
BnPR1, BnPR4, and BnPDF1.2, which were homologous to AtPR1, 
AtPR4, and AtPDF1.2, in A. thaliana. Additionally, it was found callous 
deposits and stomatal closure to be efficient structural protections 
against the pathogen B. cinerea (Monnier et al., 2018); that was also 
considered one of the ten most injurious in plant research and the cause 
of millions of dollars’ worth of economic losses in crops such as straw-
berries and winemaking (Dean et al., 2012). 

3.5. Lipopolysaccharides, exopolysaccharides and flagellin 

Lipopolysaccharides (LPSs) form an important part of the outer 
membrane of gram-negative bacteria (Sumayo et al., 2013). The func-
tion of LPSs is to provide integrity and functionality to the membrane, 
which allows them to form a barrier against various environmental 
factors and interact with plant roots in the rhizosphere. Lipopolysac-
charides have three functionally distinct domains: a lipophilic moiety, 
core oligosaccharide, and O-specific polysaccharide (Hernández-Esqui-
vel et al., 2021). 

On the other hand, exopolysaccharides (EPSs) are carbohydrates that 
were secreted by various species of bacteria, as well as other groups of 
microorganisms (Abdalla et al., 2021). In the case of some pathogenic 
bacteria, EPSs can be virulence factors (Cassin and Tseng, 2019), 
whereas in plant growth-promoting bacteria, mainly those that inhabit 
the rhizosphere (Plant Growth-Promoting Rhizobacteria), the EPSs 
produced were relevant for rhizosphere colonization. Some species that 
produce LPSs include Pseudomonas, Agrobacterium, and Rhizobia (San-
toyo et al., 2021). 

Lipopolysaccharides and EPSs have been recognized as elicitors of 
immune responses in plants for decades (Ranf, 2016). In 2008, Park 
et al. (2008) determined that EPSs produced and purified from the 
rhizobacterium Burkholderia gladioli strain IN26 stimulated an ISR 
response in cucumber plants during infection with the fungal pathogen 
Colletotrichum orbiculare. Likewise, LPSs of beneficial strains of Pseudo-
monas manage to activate the immune system of radish plants, thereby 
reducing the harmful effects of Fusarium wilt. This study involved the 
generation of a mutant in the antigenic-O side chain of the lipopoly-
saccharide, which was characterized by a greenhouse bioassay (Leeman 
et al., 1995). During previous studies on the role of LPSs as ISR inducers 
have been conducted in tomato, Arabidopsis, radish, and carnation 
plants, where it was showed resistance against pathogens such as 
Fusarium spp. (Meziane et al., 2005). More recently, LPSs from the 
bacterium Ochrobactrum lupini KUDC1013 was shown to induce systemic 
resistance (ISR) in tobacco plants to soft rot caused by the pathogen 
Pectobacterium carotovorum. Further, flagellins from the same strain 
produced a similar effect (Sumayo et al., 2013). There is urgent 
requirement to make studies on the specific role of LPSs, including 
deletion of domains in genes important for the synthesis of LPSs and 
other components (apart from the region of the O-antigen), on the 
stimulation of the ISR. Whereas in other studies had focused on the role 
of LPSs as a plant growth stimulator (Sigida et al., 2020). 

Flagellin and LPS from P. fluorescens strain WCS358 have also been 
characterized as effective inducers of resistance in Arabidopsis; however, 
both determinants were not equally effective, or their activity as elici-
tors was null in tomato and pea plants (Meziane et al., 2005). A previous 
study explored on the mechanism of activation of the ISR response in 
plants and the connection between flagellin and the mode of recognition 
by plant receptors in a two-step model (Meindl et al., 2000). The authors 
reported that the N-terminal region of flagellin is important in the first 
step of receptor recognition and binding, where the C-terminal is the one 
that gives the "message" of activation and the start of signaling. 

Recently, it has been reported that the flagellin of Bacillus amyloli-
quefaciens is also capable of activating defense responses in chilli plants 
(Capsicum annuum L.) and ameliorating the effects of the groundnut bud 
necrosis virus (GBNV). Overexpression of the transcription factors 
WRKY33 and NPR1, PAL, PO, and SAR8.2, which are SA-sensitive 
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defense genes, has been reported. However, the authors also found that 
JA-sensitive PDF and LOX genes were upregulated in pepper plants 
challenged with GBNV. It was observed that flagellin, recognized as a 
MAMP molecule of the bacterium B. amyloliquefaciens strain CRN9, can 
trigger innate immunity and restrict the growth of the virus in chilli 
through ISR as a response activated by both pathways SA and JA/ET 
signaling (Rajamanickam and Nakkeeran, 2020). 

3.6. Siderophores 

Siderophores, which are iron-chelating molecules, were produced by 
pathogenic and nonpathogenic microorganisms to obtain iron from the 
surrounding environment, either by freely inhabiting the soil, interact-
ing with plants, or living within the host as endophytes (Gu et al., 2020). 
Siderophores were also efficient virulence factors, and in beneficial 
bacteria, the production and excretion of siderophores is a mechanism 
for deprivation of iron in pathogenic organisms (Alejandre-Castañeda 
et al., 2022; Saha et al., 2013). The role of siderophores as ISR elicitors 
has been recognized as the chemical diversity of siderophores is 

surprising in beneficial bacteria, in communication and beneficial in-
teractions with plant hosts. For example, there are carboxylate-type 
siderophores (e.g., Achromobactin and Citrate), hydroxamate (e.g., 
Ferrichrome and Desferrioxamine-E), catecholate (e.g., Enterobactin), 
phenolate (e.g., Pyochelin and Yersiniabactin), and mixed-type side-
rophores, such as Aerobactin and Pyoverdin, which are common in 
Pseudomonas species (Ghosh et al., 2020; Loper et al., 2012). 

Although siderophores were widely studied molecules and one of the 
mechanisms pioneered for biological control of phytopathogens, the 
mechanism by which they trigger the ISR response in plants is poorly 
understood. Iron deprivation or elimination per se seems to be a novel 
mechanism of activation of immunity, which implies an alteration in the 
homeostasis of metals (Aznar and Dellagi, 2015). Previous studies on the 
use of animal models may help in the understanding of the role of mi-
crobial siderophores as triggers of plant immunity. Fig. 3 illustrates the 
chemical diversity of the bacterial elicitors. 

Several other elicitors also identified that may be part of the bacterial 
cells and it can function as ISR elicitors; however, their function has 
studiedearlier because of antimicrobial activities. These included the 

Fig. 3. Chemical and structural diversity of bacterial elicitors reviewed here. Made with information from multiple references cited in this work. CLPs: Cyclic 
lipopeptides; CDPs: cyclodipeptides; AHLs: Acyl homoserine lactones; VOCs: Volatile organic compounds; LPSs: Lipopolysaccharides; DAPG: 2,4- 
diacetylphloroglucinol. 
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volatile compounds hydrocyanic acid (HCN) (Shabanamol et al., 2017), 
dimethyl disulfide (Huang et al., 2012), or others such as 2,4-diacetyl-
phloroglucinol (2,4-DAPG) (Chae et al., 2020), or phenazines (Patel 
and Archana, 2018; Weller et al., 2012). In contrast, other compounds 
such as N-alkylated benzylamine produced by non-pathogenic Pseudo-
monas putida bacteria function as ISR elicitors, but more study need to 
explore in interaction with plants (Pršić and Ongena, 2020). It is evident 
that the antibiotic functions of several elicitor compounds are very 
attractive for research, but their roles in the immune response of plants 
cannot be ignored. Some of the works reviewed in this work are listed in 
Table 1. 

4. The way forward 

Previous studies unravel the biochemical components participated in 
the signaling of the SAR and ISR pathways (Pieterse et al., 2014; Pršić 
and Ongena, 2020; Zehra et al., 2021). The present study reviewed the 
immense diversity of bacterial origin biomolecules that can function as 
elicitors of the ISR response, and non-pathogenic nature that can acti-
vate both SAR and ISR pathways. There must be more explored about 
the nature of the specific and general receptors for the plant cell. In 
addition, only a few genes that participate in the response and signaling 
of both the SAR and ISR pathways have been identified. Previous studies 
have also focused their research efforts on further evaluation, mainly by 
determining expression levels (e.g., qPCR, RT-PCR) and the roles of the 
same genes in responses to different species of beneficial bacteria. It is 
essential to further research to find out the different interactions of the 
products of these genes, for example, protein-protein interactions, in 
plants, including Arabidopsis. 

On the other hand, the ISR response mediated by rhizobacteria has 
been studied; however, the role of other environmental factors and how 
they can regulate (or enhance) the action of certain elicitors has still 
need to be evaluated. Such as iron deficiency can play an important role 
in the overlapping regulation of ISR and responses to nutrient deficiency 
in plants (Montejano-Ramírez et al., 2020; Romera et al., 2019). How-
ever, given the importance of multiple abiotic factors (e.g., temperature, 
drought, salinity, etc.), many of these abiotic stresses may explore the 
plant-bacteria communication and interaction in the ISR response to 
plants. Finally, it is necessary to formulate novel bioinoculants that 
contain one or several bacterial elicitors, which together with microbial 
agents, prevent and reduce the negative effects of pathogens on crops. 
This would undoubtedly result in a more sustainable production. 
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Alcántara, E., Angulo, M., Pérez-Vicente, R., 2019. Induced systemic resistance (ISR) 
and fe deficiency responses in dicot plants. Front. Plant Sci. 10, 1–17. https://doi. 
org/10.3389/fpls.2019.00287. 

Saha, R., Saha, N., Donofrio, R.S., Bestervelt, L.L., 2013. Microbial siderophores: A mini 
review. J. Basic Microbiol. 53, 303–317. https://doi.org/10.1002/jobm.201100552. 

Santoyo, G., Urtis-flores, C.A., Dami, P., Orozco-mosqueda, M.C., Glick, B.R., 2021. 
Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria 
(PGPR) 1–18. 

Saravanakumar, D., Thomas, A., Banwarie, N., 2019. Antagonistic potential of 
lipopeptide producing Bacillus amyloliquefaciens against major vegetable 
pathogens. Eur. J. Plant Pathol. 154, 319–335. https://doi.org/10.1007/s10658- 
018-01658-y. 

Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., Nelson, A., 2019. 
The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 
430–439. https://doi.org/10.1038/s41559-018-0793-y. 

Schikora, A., Schenk, S.T., Hartmann, A., 2016. Beneficial effects of bacteria-plant 
communication based on quorum sensing molecules of the N-acyl homoserine 
lactone group. Plant Mol. Biol. 90, 605–612. https://doi.org/10.1007/s11103-016- 
0457-8. 

Schlechter, R.O., Miebach, M., Remus-Emsermann, M.N.P., 2019. Driving factors of 
epiphytic bacterial communities: A review. J. Adv. Res. 19, 57–65. https://doi.org/ 
10.1016/j.jare.2019.03.003. 

Schneider, T., Müller, A., Miess, H., Gross, H., 2014. Cyclic lipopeptides as antibacterial 
agents - Potent antibiotic activity mediated by intriguing mode of actions. Int. J. 
Med. Microbiol. 304, 37–43. https://doi.org/10.1016/j.ijmm.2013.08.009. 

Shabanamol, S., Sreekumar, J., Jisha, M.S., 2017. Bioprospecting endophytic 
diazotrophic Lysinibacillus sphaericus as biocontrol agents of rice sheath blight 
disease. 3 Biotech 7, 1–11. https://doi.org/10.1007/s13205-017-0956-6. 

Shailendra Singh, G.G., 2015. Plant Growth Promoting Rhizobacteria (PGPR): Current 
and Future Prospects for Development of Sustainable Agriculture. J. Microb. 
Biochem. Technol. 07. https://doi.org/10.4172/1948-5948.1000188. 

Sigida, E.N., Kargapolova, K.Y., Shashkov, A.S., Zdorovenko, E.L., Ponomaryova, T.S., 
Meshcheryakova, A.A., Tkachenko, O.V., Burygin, G.L., Knirel, Y.A., 2020. Structure, 
gene cluster of the O antigen and biological activity of the lipopolysaccharide from 
the rhizospheric bacterium Ochrobactrum cytisi IPA7.2. Int. J. Biol. Macromol. 154, 
1375–1381. https://doi.org/10.1016/j.ijbiomac.2019.11.017. 
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