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ABSTRACT 

 A plant microbiome includes a microbial community that typically interacts 

extensively with a plant. The plant microbiome can survive either inside or outside of plant 

tissues, performing various plant beneficial activities including biocontrol of potential 

phytopathogens and promotion of plant growth. An important part of the plant microbiome 

includes plant growth-promoting bacteria (PGPB) that commonly reside in the rhizosphere 

and phyllosphere, and as endophytic bacteria (inside of plant tissues). As new plant 

microbiome-manipulating strategies have emerged in recent years, we have critically 

reviewed relevant literature, chiefly from the last decade. We have analysed and compared 

the rhizosphere, phyllosphere and endosphere as potential ecosystems for manipulation, in 

order to improve positive interactions with the plant. In addition, many studies on the 

bioengineering of the endophyte microbiome and its potential impact on the core 

microbiome were analysed with respect to five different strategies, including host mediated 

and multi-generation microbiome selection, inoculation into soil and rhizosphere, 

inoculations into seeds or seedlings, tissue atomisation and direct injection into tissues or 
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wounds. Finally, microbiome engineering presents a feasible strategy to solve multiple 

agriculture-associated problems in an eco-friendly way. 

 

Keywords: Plant microbiome, rhizosphere, endophytic bacteria, PGPB, biological control. 
 

INTRODUCTION 

 The term ¨microbiome¨ has been defined in two different ways. For example, 

Bulgarelli et al. (2013) refer to the microbiome as the set of genomes of the 

microorganisms in a particular habitat, whereas they define the microbiota as the set of 

microorganisms of a particular habitat. Thus, they employ the term microbiota as a 

synonym of microbial communities. Some others use the term microbiome to mean all the 

microbes of a community, and in particular, for the plant microbiome, those microbial 

communities associated with the plant which can live, thrive, and interact with different 

tissues such as roots, shoots, leaves, flowers, and seeds (Haney and Ausubel, 2015; Haney 

et al., 2015; Mendes et al., 2013; Mueller and Sachs, 2015; Nelson, 2017; Turner et al., 

2013). Here, we refer to the plant microbiome according to this last definition.  

The microbiome is composed of several different types of organisms, including 

bacteria, fungi, protozoa, archaea, and viruses (Mueller and Sachs, 2015). Plant 

microbiomes can play a beneficial role, protecting the plant from potential pathogens, at the 

same time, improving growth, health, and production, as well as can conferring an adaptive 

advantage to plants (Berg et al., 2016; Haney et al., 2015). In particular, the bacterial 

microbiome, carrying out beneficial interactions is important for sustainable agriculture and 

has attracted more attention, compared to the other groups of organisms. Manipulation of 

the bacterial microbiome and the production of bioinoculants enables scientists to affect 

plant beneficial activities such as limits to growth, the action of phytopathogens, and 

promoting plant growth and health, thereby potentially reducing the use of chemical 

fertilizers (Adesemoye and Kloepper, 2009). Rhizospheric or endophytic bacteria that 

promote plant growth are known as plant growth-promoting bacteria (PGPB) (Kloepper et 

al., 1980; Santoyo et al., 2016). 

 PGPB may promote plant growth by direct or indirect mechanisms (Glick, 2012; 

Santoyo et al., 2012). Briefly, direct promotion of plant growth occurs when a bacterium 

facilitates the acquisition of essential nutrients or modulates the level of hormones within a 
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plant. Nutrient acquisition facilitated by PGPB usually includes elements such as nitrogen, 

phosphorus, and iron, which are essential for plant development (Calvo et al., 2017). 

Modulation of hormone levels may involve PGPB in the synthesis of one or more 

phytohormones, auxins, cytokinins, and gibberellins (Bhattacharyya et al., 2015, Pérez-

Flores et al., 2017). In addition, some PGPB can lower the levels of the phytohormone 

ethylene by synthesising an enzyme, 1-aminocyclopropane-1-carboxylate (ACC) 

deaminase, that cleaves the compound ACC which is the immediate precursor of ethylene 

in all higher plants (Glick, 1995; Glick, 2012). Indirect plant growth promotion occurs 

when a PGPB decreases plant damage after infection with a plant pathogen, including 

harmful fungi and bacteria. This is usually due to the inhibition of the pathogens by PGPB 

(Compant et al., 2005, Ryan et al., 2008, Santoyo et al., 2012; Santoyo et al., 2016). The 

mechanisms include the synthesis and excretion of antibiotics (such as 2,4-

diacetylphloroglucinol), proteases, chitinases, bacteriocins, siderophores, lipopeptides (such 

as iturin A, bacillomycin D, and mycosubtilin), and volatile organic compounds, to mention 

a few (Leclère et al., 2005; Santoyo et al., 2012, Glick, 2012, Hernández-León et al., 2015, 

Martínez-Absalón et al., 2014). The above-mentioned capabilities make the microbiome an 

important component for the plant to carry out physiological functions, and in some cases, 

the microbiome is a fundamental part of basic processes such as plant development or 

growth of essential organs such as the root, for improved acquisition of nutrients and water 

(Gutiérrez-Luna et al., 2010). Though the plant microbiome is composed of numerous 

organisms, which play relevant roles, this review is mainly focused on bacterial species, 

particularly those with biocontrol and plant growth promoting activities.  

 

LIVING INSIDE, OUTSIDE AND ON THE PLANT 

 Figure 1 shows the plant microbiome, as well as the regions or zones where the 

microbes can interact with the plant, either they live outside (rhizosphere), inside 

(endosphere) or on (phyllosphere) the plant. The rhizosphere is the soil portion influenced 

by plant roots (Hartmann et al., 2008). This microecosystem is the major region where 

chemical communications and the exchange of compounds and nutrients occur between the 

plant and soil microorganisms (Peiffer et al., 2013, Pieterse et al., 2016). A strategy to 

improve plant health and development includes the selection and modification of the 
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rhizosphere microbiome (Chaparro et al., 2012; Mendes et al., 2013; Swenson et al., 2000). 

The endospheric microbiome can be a subset of the rhizosphere microbiome (Germida et 

al., 1998; Márquez-Santacruz et al., 2010). The work by Bai et al. (2015) also found a huge 

overlap between the Arabidopsis leaf and root microbiomes, highlighting the dynamic state 

of microbes interacting with the plant host. The endosphere is the internal environment of 

plants wherein endophytes, including bacteria, archaea, fungi, and viruses inhabit, colonise, 

and survive without causing any harm to the plant (Compant et al., 2010).  

 Many studies have investigated the colonisation of internal plant tissues by 

endophytes. In a recent work, Santoyo et al. (2016) reviewed available data about various 

entry points, the rhizosphere being an important region for microbe entry into the plant 

because of its nutrient-rich nature, supplied by the root exudates, and hence its high 

concentration of microbes (Bradi and Vivanco, 2009). There are other areas of entry too, 

such as the lenticels, stomas, wounds, ruptures, and nodules. Endophytes can also be 

inherited by vertical transmission, through seeds (Santoyo et al., 2016). Some researchers 

have proposed that the internal microbiome of plants has an advantage over external 

bacteria (phyllosphere or rhizosphere) in that it not affected by soil conditions including the 

presence of bacterial predators. Moreover it has been proposed that (chemical) 

communication is more effective inside of the plant’s tissues (Ali et al., 2012; Coutinho et 

al., 2015), because lower concentrations of metabolites secreted by the bacterial endophytes 

may exert a greater effect on the plant, compared to those secreted in an open environment 

such as the rhizosphere, where biotic and abiotic factors, can counteract and minimise its 

effect (Santoyo et al., 2017). For example, siderophores of bacterial origin excreted in the 

rhizosphere can be captured and internalised by other organisms such as fungi, which 

possess nonspecific transporters of the siderophore-Fe complexes (Philpott, 2006).  

 Several studies have shown that the composition of the rhizosphere is more diverse 

than the endosphere. In a study involving rhizospheric and endospheric 16S rRNA genes 

from Mexican husk tomato plants (Physalis ixocarpa), a higher number of operational 

taxonomic units (OTUs) were found in a library of clones from the rhizosphere compared 

to that from the root endosphere (i.e. 86 vs. 17, respectively). It should be noted that the 

number of clones randomly obtained from the endosphere versus the rhizosphere was 

statistically similar. The majority of the genera found in the rhizosphere, such as 
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Stenotrophomonas, Burkholderia, Bacillus, and Pseudomonas, were also detected in the 

internal tissues of the plant (Márquez-Santacruz et al., 2010). When cultivable bacterial 

endophytes were isolated and characterised at the molecular level from different agrofields 

of Physalis ixocarpa plants they coincided with the diversity of the OTUs found by 

Márquez-Santacruz et al (Rojas Solis et al., unpublished results). These results show 

evidence of the existence of a core microbiome, with beneficial functions in Physalis 

ixocarpa plants, that is inherited through generations.  

 The phyllosphere comprises the surface and the apoplast of leaf tissue (Vorholt, 

2012). The great importance of the phyllosphere microbiome on biocontrol, and the 

promotion of plant growth, has been suggested for years. In fact, some authors have 

proposed that the foliar microbiota exerts beneficial activities comparable to that which is 

observed for rhizospheric and endophytic microbes (Lindow and Brandl, 2003; Peñuelas 

and Terradas, 2014). For example, many foliar microbiotas can fix nitrogen, this being the 

main mechanism to provide nitrogen to plants growing in tropical humid ecosystems (Abri 

et al., 2005). Other beneficial roles of the microbiota residing on the plant surface include 

the indirect protection against pathogens and the production of plant hormones. Thus, the 

possibility exists that foliar microbiota could be employed to reduce the use of 

agrochemicals to control leaf pathogens and promote plant growth (Peñuelas and Terradas, 

2014). However, considerable additional research is needed to obtain a better understanding 

of the functioning of these microorganisms.  

 

WHY MODIFY THE PLANT MICROBIOME? 

The aforementioned mechanisms have been extensively studied, and several reports show 

the potential of PGPB to restrict the growth of phytopathogens and promote plant growth. 

However, why do we need to modify the microbiome? To the best of our knowledge, every 

plant that has ever been studied is associated with microorganisms. Moreover, all plants are 

known to contain endophytic organisms as part of their internal microbiome (Ryan et al., 

2008). The plant microbiome is composed of active organisms that alter plant physiology 

and development and induce resistance systems against pathogens as well as tolerance 

mechanisms to various types of stress such as drought, saline, or contaminated soils 

(Santoyo et al., 2017; Yaish et al., 2017; Yuan et al., 2016). However, such functions are 
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not carried out by ‘the whole microbiome’, but by one or a few microbial species, as well 

as because of the additive or synergistic effects between two strains or more (Rojas-Solís et 

al., 2016; Timm et al., 2016). Therefore, these few bacterial species could be used to 

‘enhance’ or activate defence systems in other plant species (heterologous hosts) that are 

susceptible to certain pathogens or abiotic factors such as salinity, as well as for other uses 

such as soil bioremediation or increased fruit yield (Mueller and Sachs, 2015, Yuan et al., 

2016). 

 Different plants may have different tolerance capacities to biotic or abiotic stresses, 

growth at different latitudes or altitudes, or nutrient-poor soils, where, in many cases, their 

microbiome allows them to survive in such conditions (Santoyo et al., 2017). Therefore, the 

general interest is to transfer these capabilities to plants that lack them, including for the 

biocontrol of potential pathogens (Wicaksono et al, 2017; Yuan et al., 2016;). By 

transferring one or more microbial species, mainly bacteria, a greater amount of genetic 

material or gene numbers can be transferred, compared to single gene transfer (i.e., genes 

coding for Bacillus thuringiensis cry toxins) (Romeis et al., 2006), improving several 

functions at the same time. For example, some PGPB perform multiple direct and indirect 

growth-promoting activities, such as Pseudomonas fluorescens UM270 or Arthrobacter 

agilis UMCV2 (Avilés-García et al., 2016; Hernández-León et al., 2015; Hernández-

Salmerón et al., 2016; Orozco-Mosqueda et al., 2013). These PGPB can exert multiple 

beneficial activities from the rhizosphere or endosphere (Mendes et al., 2013; Santoyo et 

al., 2016). However, additional studies are necessary to understand the interaction and/or 

consequences that PGPB could exert on the core microbiome (internal or external) of the 

plant species to be inoculated. 

 

METHODS FOR DETECTING ENDOPHYTES WITHIN THE PLANT 

When a bacterial strain is inoculated into the bulk soil or into the rhizosphere, with the 

intention of modifying the existing microbiome, it is relatively easy to confirm its presence 

by re-isolating the inoculated bacterium. However, the methods to study bacteria within 

plant tissues are more complex (Mitter et al., 2017). We can classify endophyte localisation 

methods as quantitative and qualitative (visual) methods. Quantitative methods allow us to 

determine the actual amount or number of cells that inhabit the tissue (usually expressed as 
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per gram of tissue). These methods include qPCR (which usually includes amplification of 

specific genomic regions such as the16S-23S rRNA intergenic spacer regions) (Avilés-

García et al., 2016), in order to detect the presence of endophytes at the single cell level. 

Re-isolation (de novo) of endophytes may be a quantitative method. However, it requires 

researchers to select the pre-inoculated strains and differentiate them from the rest of the 

microbiome, for example by selecting for resistance to antibiotics because of previously 

analysed induced or spontaneous mutations (Wicaksono, et al., 2017).  

 Visual methods include tracking GFP (Green Fluorescent Protein), in situ 

hybridisation with fluorescence, and gene fusions with β-glucuronidase (GUS) (Avilés-

García et al, 2016; Mitter et al, 2017; Patel and Archana, 2017). These methods can be 

semi-quantitative, because it is possible to quantify the spots where the strains are located 

in each tissue section. The advantages of such methods include the ability to determine the 

specific localisation at the level of the tissue, or even, cell type or intercellular zone. An 

easy and rapid although qualitative method is the detection by traditional PCR. This 

technique allows a researcher to determine the localisation of the endophyte of interest at 

the tissue level. However, multiple controls are required to rule out false-positive 

amplification. See Table 1 for a list of advantages and disadvantages of the methods 

discussed above.  

 

ENGINEERING OF THE PLANT MICROBIOME 

 Strategies for inoculating strains to introduce and/or engineer the plant microbiome in 

plants are diverse. For example, they occur through host-mediated and multi-generation 

microbiome selection, inoculation into bulk soil, rhizosphere, seeds or seedlings, 

atomisation into tissues such as stems, leaves, and flowers, and direct injection into tissues 

or wounds. Some recent relevant studies involving the aforementioned techniques are 

reviewed below.  

 

Host-mediated and multi-generation microbiome selection 

 According to Mueller and Sachs (2015), an engineering approach host-mediated 

microbiome selection is a method that selects microbial communities indirectly through the 

host and leverages host traits that evolved to influence microbiomes.  Pioneering work in 
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which ‘artificial selection of the ecosystem’ was attempted on the basis of selecting the 

highest (high selection lines) or lowest (low selection lines) plant biomass of Arabidopsis 

thaliana previously modified by microbial interaction (bacteria, algae, protozoa and fungi) 

with the plant over 16 generations, was published by Swenson et al. (2000). In this study, 

the authors designed an aquatic microcosm that worked at low or high pH and allowed the 

degradation of the toxic compound 3-chloroaniline. Importantly, these experiments show 

that selection or bioengineering can be attempted at the ecosystem level rather than for 

individual organisms, as was previously the case. Unfortunately, the authors did not analyse 

specific changes in the microbiota across generations, which would have allowed a better 

picture of the biotic evolution of the microecosystem. More recently, Panke-Buisse et al., 

(2015) used a technique similar to that of Swenson et al. (2000); they undertook a multi-

generation experiment with Arabidopsis thaliana Col-0 plants that could select the 

microbiome that influenced their life events such as late and early flowering. The 

microbiome was inoculated into 3 different Arabidopsis (Ler, Be, RLD) and Brassica rapa 

genotypes. The authors analysed the changes in the microbiome during different 

generations by sequencing the 16S rRNA genes and found that the plants inoculated with a 

microbiome associated with late flowering showed consecutive increases in inflorescence 

biomass for the 3 Arabidopsis genotypes, as well as an increase in the total biomass of 

Brassica rapa. Based on the observation that the increase in biomass correlated with an 

increased activity of the microbial extracellular enzymes associated with nitrogen 

mineralisation in soils, the authors proposed that their selection results based on different 

microbial communities have great potential to aid the use of microbiomes to address 

diverse agronomic and environmental problems. 

 

Inoculation into the soil and rhizosphere 

 Inoculation of external strains from bulk or rhizospheric soils may change the 

structure of the microbial community. In semi-natural conditions, Chihaoui et al. (2015) 

analysed the effect of inoculation of Agrobacterium sp. 10C2 on nodulation, plant growth, 

and the rhizosphere microbiome of Phaseolus vulgaris, a nodule-inhabiting endophyte; this 

strain does not form nodules and is non-pathogenic. Inoculation with the 10C2 strain 

promoted a significant increase in the number of nodules and plant biomass. The beans that 
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were produced showed a significant increase in the contents of phosphorus, polyphenols, 

and flavonoids, and total antioxidant capacity. To evaluate the effect of the 10C2 strain on 

the microbiome, the terminal restriction fragment length polymorphism (TRF) technique of 

PCR-amplified 16S rRNA genes was used. Fifteen days after the inoculation of the 10C2 

strain, the TRF richness was unchanged, but the bacterial community structure did change. 

However, when bean plants were cultivated in these soils for a much longer period of time, 

i.e. 75 days, both the TRF richness and structure were affected by the 10C2 strain. 

Interestingly, the TRF richness increased in the rhizosphere soil, but not in the soil without 

the plant. Bacillus licheniformis, Bacillus pumilus, Paenibacillus koreensis, and the genera 

Arthrobacter, Microbacterium, Actinomyces, Brevibacterium, among others (Chihaoui et 

al., 2015) have been implicated in the inoculation of 10C2 strain. It is noteworthy that such 

bacterial groups are widely known as plant growth promoters (Glick et al., 2015; Santoyo et 

al., 2012). The authors of this study inferred that the 10C2 strain positively influenced the 

rhizosphere through stimulation of the bacterial species known for their plant growth-

promoting abilities. 

 

Inoculation into seeds or seedlings  

 Studies on the interaction between the rhizosphere and endosphere inhabitants of 

slow-growing plants such as orchids are few. However, degradation of natural 

environments such as forests have limited the natural habitat of these plants, and therefore, 

there have been several attempts to rescue them. Certainly, orchids have specific 

associations with mycorrhizal fungi, and various studies account for this. However, a recent 

study (Pavlova, 2017) showed that inoculation of bacterial species such as Pseudomonas 

fluorescens and Klebsiella oxytoca into Dendrobium nobile Lindl. increases the adaptive, 

germination, and growth capacity of orchids. In this study, the authors followed the GFP 

colonisation pattern of P. fluorescens and K. oxytoca in the seeds, seedlings, and roots of 

the epiphytic orchid. It would have been interesting to analyse the impact of inoculation of 

these strains on the endophyte microbiome of orchids. 

 Recently, Rojas-Solís and colleagues (2018) reported a beneficial additive effect of 

two endophyte strains, Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia 

CR71, when both strains were co-inoculated into the rhizosphere of tomato seedlings 
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(Lycopersicon esculentum cv Saladette), compared to single inoculation. A better plant 

growth-promoting effect was observed. Interestingly, the volatile cocktails emitted by 

strains E25 and CR71 were quite similar, highlighting the production of sulphur-containing 

compounds such as the antimicrobial volatile dimethyl disulphide (DMDS).  

 

Tissue atomisation  

 The effect that the microbiome has on various phenotypic and physiological 

characteristics of plants may be due to the multiple mechanisms carried out by various 

PGPB (Hernández-León et al., 2015). It is common to identify the involvement of more 

than one mechanism in plant growth promotion (e.g., phytohormones or organic volatile 

compounds) as well as the biocontrol effect against phytopathogens (e.g., the production of 

antibiotic compounds) (Hernández-León et al., 2015; Pérez-Flores et al., 2017). On the 

other hand, the beneficial effects of the microbiome can be attributed to the interaction 

between individual organisms or functions. Timm et al. (2016) found a beneficial additive 

effect of two strains of Pseudomonas and Burkholderia isolated from Populus deltoides. 

The authors observed, by plant inoculation, that the mixture of these strains in Populus 

plants improved root biomass and plant photosynthetic capacity better than either 

individual inoculation or no inoculation. The plant response was analysed through gene 

expression (transcriptomic) analysis and it was found that inoculation of each strain turned 

on genes specific for Pseudomonas and Burkholderia, as well as those of the mixture, 

including genes encoding for the responses to ethylene and stresses such as temperature and 

salinity. Other genes involved in the synthesis of thiamine, sulphate, and lipids were 

modulated by the mixed inoculum. The authors also analysed the impact of the mixed 

inoculum on the metabolic profile of the leaf compared to individual inoculation. 

 In another recent work, Mitter et al. (2017) employed a new technique to introduce the 

endophyte bacterium Paraburkholderia phytofirmans PsJN by atomisation into the flowers 

of mono- and dicotyledonous plants. Importantly, the authors managed to modify the seed 

microbiome by vertical inheritance as well as the growth characteristics of wheat plants. In 

either greenhouse or field experiments, it was found that seeds that inherited the PsJN strain 

showed significant differences in plant development with respect to the controls (plants 

with an unmodified microbiome). This study also analysed the changes in the endogenous 

ACCEPTED M
ANUSCRIPT



 11 

microbiome of the seeds following the introduction of the endophyte PsJN, and found that 

certain groups significantly changed their abundance. Such changes were marked by a 

strong decrease in the population of α- and γ-Proteobacteria and an increase in β-

Proteobacteria. The authors point out that one of the challenges of this technique that still 

needs to be addressed is that the modified microbiome should be inherited for more than 

one generation, as the plants in the second generation do not inherit the PsJN strain. 

However, this novel technique raises many expectations for bioengineering of plant 

microbiome without genetic manipulation of the plant.  

 

Direct injection into tissues or wounds  

 Some plants are naturally resistant to certain pathogens, while others might be 

highly sensitive. The medicinal plant Mānuka (Leptospermum scoparium) native to New 

Zealand, produces antimicrobial oils that are effective against the pathogenic bacterium 

Pseudomonas syringae. Therefore, Wicaksone and colleagues (2017) questioned whether 

this biocontrol effect might be transferrable by inoculating Actinidia deliciosa (Kiwifruit) 

with bacterial endophytes from L. scoparium. In this experiment, three endophytic strains 

of the genus Pseudomonas that were originally isolated from L. scoparium were inoculated 

into wounds of Actinidia deliciosa; they were able to survive in this new host and confer 

resistance to P. syringae infection. In this way, antimicrobial capacities exerted by 

endophyte plant bacteria can be transferred to other plants susceptible to attack by 

pathogens. 

 Another recent study showed that direct inoculation of a PGPB into a plant, help the 

bacterium to colonise and survive within the plant. This is observed in the case of the 

biocontrol agent and PGPB Arthrobacter agilis UMCV2 (Orozco-Mosqueda et al., 2013; 

Velázquez-Becerra et al., 2013), which can survive direct injection into the stem of 

Medicago truncatula plants (Avilés-García et al., 2016). The authors point out that such 

colonisation may be more successful when nutrients (particularly Fe) in the plant are 

bioavailable (Avilés-García et al., 2016). Direct injection techniques involving bacterial 

endophytes have been employed in other plant species such as teocinte, the maize ancestor 

(Zea mays) (Johnston-Monje and Raizada, 2011). Interestingly, the authors observed that 

two isolates of Enterobacter asburiae, inoculated by stem injection, managed to leave the 
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endophyte environment and also colonised the rhizosphere. The data indicate two aspects 

of the stages of colonisation: the plant can expel bacteria into the surrounding or 

rhizospheric soil, as occurs with many low molecular weight compounds exuded by the 

roots, or the endophytes have their own mechanisms to open and close the entry door to the 

plant tissues. The two hypotheses have not been clarified until now and this point warrants 

further detailed study. Understanding such aspects may help us discover the mechanisms of 

entry and exit into and from the plant tissues for endophytes as well as or pathogenic 

organisms.  

 

CONCLUSIONS AND PERSPECTIVES  

 The microbiome is proposed to be the “second genome” of various organisms by 

many groups (Clavel et al., 2016; Grice and Segre, 2012; Zmora et al., 2016), while others 

have proposed the term “holobiont” to define the broad role that is played by the 

microorganisms associated with plant or animal hosts (Zilber-Rosenberg and Rosenberg, 

2008). What it is clear is that the microbiome plays a transcendental role in host interaction. 

The plant and animal intestine microbiome can perform similar functions such as 

participating in nutrient absorption, modulating gene expression, acting as biocontrol 

pathogens, and improving growth and health in general (Hacquard et al., 2015; Mendes and 

Raaijmakers, 2015; Ramírez-Puebla et al., 2013; Xue et al., 2015). The plant microbiome, 

though not discussed here, includes not only the bacterial communities, but also several 

other organisms, such as viruses, archea, fungi or nematodes, which have important effects 

on host biology. In some cases, the microorganisms may develop forced symbioses with 

their host (Gil, Latorre, and Moya, 2004). The microbial communities are highly active and 

influence the metabolism and physiology of the host. Some microbes are able to colonize 

the inner plant tissues, and therefore modify the core microbiome, which can be inherited in 

the subsequent generation of the plant; but the multi-generation inheritance of endophytic 

genome components in plants is one of the challenges involved in the use of endophytes. 

Microbiome engineering can have a significant impact on agricultural production (Mitter et 

al., 2017). Therefore, development of a (modified) microbiome with these desired 

characteristics is necessary.  
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 The role of interaction between multiple biotic and abiotic factors in ecosystems such 

as the rhizosphere or the endosphere (although more stable) warrants more studies (Santoyo 

et al., 2017). It is necessary to select highly competitive organisms with good colonisation 

abilities (Rojas-Solís et al., 2016). These strains may have an advantage over other 

organisms, since they must compete for nutrients, displace other organisms, and survive in 

an environment as challenging as the rhizosphere. Breaking the barrier of the plant cell as 

well as colonising the tissues and producing compounds that positively modulate plant 

physiology or genetics can be equally challenging. 

 As far as we know, there are only a limited number of studies with the intention of 

engineering the foliar microbiome or the phyllosphere (Wu et al., 2013). Diverse 

difficulties have been proposed since a few decades ago and only a few cases exist with the 

intention to biocontrol some pathogens in this habitat; however, these approaches have met 

with little success (Andrews, 1990). One major challenge in this regard is the effect of 

abiotic or environmental factors, which can significantly modulate the phyllosphere 

biodiversity (Santoyo et al., 2017; Vacher et al., 2016). And, although the atomization of 

bacteria initially includes the colonization of the phyllosphere, the intention is that such 

strains can colonize the internal tissues of the plant. The goal is clear, to modify the internal 

microbiome such that the beneficial effects of this modification are transgenerational. Here, 

it is worth mentioning that Bodenhausen et al. (2014) found that the genotype of a plant can 

modify the foliar microbiota. Thus, two mutants of Arabidopsis thaliana, in the acs2 and 

pec1 genes, affected in cuticle formation and ethylene signalling, showed marked changes 

in the diversity of phyllosphere microorganisms compared to the wild-type plant. This work 

suggests that it is necessary, when studying plant-microbe interactions, to focus on both 

how the bacterial microbiome affects the plant but also on how the plant affects the 

bacterial microbiome.   

 Several strategies involving PGPB can modify the plant microbiome. However, a 

major challenge is to colonise the internal tissues of the plant. The strategies and methods 

of localisation employed by strains that successfully colonise and inhabit various plant 

tissues have their own advantages and disadvantages (Mitter et al., 2017; Peiffer et al., 

2013). The objective of each study varies; in some cases, only the process of colonisation is 

followed, and in other instances, the growth-promoting effect or biocontrol activity is 
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observed. Therefore, it is advisable to re-isolate the introduced species from the soil, 

rhizosphere, or endosphere, as well as to locate and corroborate their endophytic capacity 

(Avilés-García et al., 2016; Mitter et al., 2017; Pavlova et al., 2017; Patel and Archana, 

2017). The latter provides certainty about the beneficial effect of inoculating new strains 

into the core microbiome. It is of equal importance to analyse the impact exerted by the 

colonisation of the rhizosphere or endosphere on the plant microbiome. 

 Recently, many studies have reported that some endophytic strains can modify the 

structure and species richness within plant tissues (Chihaoui et al., 2015; Patel and 

Archana, 2017; Timm et al., 2016,). To the best of our knowledge, only very few studies 

have assessed the plant internal microbiome several generations following the introduction 

of a selected strain(s) (Mitter et al., 2017). Similarly, little work has been done on the 

manipulation and long-term persistence of the microbiome to control plant diseases and the 

impact on biocontrol of potential phytopathogens, although certain populations in disease-

suppressive soils are known to play an important role in this activity (Mendes et al., 2011; 

Xue et al., 2015). From a practical perspective, it would be extremely useful to identify a 

stable stress tolerance microbiome that could improve crop production capacity in different 

types of soils and in different climates (Muller et al., 2016). Finally, bioengineering of the 

plant microbiome is an interesting option to improve or increase the biological capabilities 

of the plant, a strategy that, while in its infancy, might be of enormous agricultural 

importance. 
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Figure Legend. 

 

Figure 1. The plant microbiome. The figure shows the main regions involved in plant-

microbe interactions. (1) Bulk soil: ¨the soil outside the rhizosphere where the root 

metabolites cannot influence the microbes but where the microbes can nevertheless exert 

some influence on the plant roots”. (2) Rhizosphere: “a narrow zone of soil where microbes 

are found in high concentrations and are influenced by plant exudates”. (3) Endosphere:  

“the internal regions of plant tissues inhabited by endophytic microbes”. (4) Phyllosphere: 

“the surface and apoplast of leaf tissues”.  
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METHODS FOR DETECTING ENDOPHYTES WITHIN THE PLANT 
 

 
Quantitative 

 

 
Advantages 

 
Disadvantages 

 
 

qPCR 
 

(Quantitative real-time PCR) 
 

 
 Highly reliable 
 Quantifiable at the 

single cell level 

 High cost 
(relative) 

 No visual 
detection of 
endophytes 

 
 

Re-isolation of 
endophytes 

 
(CFU/gm tissue) 

 
 Can be used for 

further analysis 
(inoculation, 

bioinoculants, etc.) 
 Experimental 
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endophytes 

 

 
 Additional work 

is required to 
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strains 

 
Qualitative/Visual 

 

 
 
 

 
 Visual detection in 
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 High cost of 
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(relative) 

 Semi-
quantitative, in 
some cases 

 
 

 
GFP  

(Green fluorescent protein) 
GUS  

(β-glucuronidase) 
FISH  

(Fluorescence in situ 
hybridisation) 

 
PCR  

(Polymerase chain reaction) 
 

 
 Easy detection of 

endophytes 

 
 Not quantitative 
 Needs multiple 

controls 
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