123 research outputs found

    Radiation heat savings in polysilicon production: validation of results through a CVD laboratory prototype

    Get PDF
    This work aims at a deeper understanding of the energy loss phenomenon in polysilicon production reactors by the so-called Siemens process. Contributions to the energy consumption of the polysilicon deposition step are studied in this paper, focusing on the radiation heat loss phenomenon. A theoretical model for radiation heat loss calculations is experimentally validated with the help of a laboratory CVD prototype. Following the results of the model, relevant parameters that directly affect the amount of radiation heat losses are put forward. Numerical results of the model applied to a state-of-the-art industrial reactor show the influence of these parameters on energy consumption due to radiation per kilogram of silicon produced; the radiation heat loss can be reduced by 3.8% when the reactor inner wall radius is reduced from 0.78 to 0.70 m, by 25% when the wall emissivity is reduced from 0.5 to 0.3, and by 12% when the final rod diameter is increased from 12 to 15 cm

    Deposition reactors for solar grade silicon: a comparative thermal analysis of a Siemens reactor and a fluidized bed reactor

    Get PDF
    Polysilicon production costs contribute approximately to 25-33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS).We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the efects of some key parameters such as reactor wall emissivity, gas distributor temperature, etc., on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality

    Deposition reactors for solar grade silicon: a comparative thermal analysis of a Siemens reactor and a fluidized bed reactor

    Get PDF
    Polysilicon production costs contribute approximately to 25–33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS). We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the effects of some key parameters such as reactor wall emissivity and gas distributor temperature, on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality.Peer ReviewedPostprint (published version

    A 3 terminal parallel connected silicon tandem solar cell

    Get PDF
    A new tandem structure based on a silicon solar cell is presented. This structure works with two or three junction levels, being the silicon cell in this last case the intermediate cell. The different levels have been interconnected in parallel and for that a greater number of the lower band gap cells would be needed in order to equalize the operating voltage of all the structure. However, the presented three terminals structure only needs a maximum of 4 pn junctions for the 3 levels structure or even only 2 for a two level structure. This structure can be easily included in a conventional 2 terminal flat module without complicating the internal wiring. The maximum technological efficiency has been estimated in 39.4% for the three levels structure and using well known materials for each level a 30 to 32% efficiency level sounds possible

    Dissolution and gettering of iron during contact co-firing

    Get PDF
    The dissolution and gettering of iron is studied during the final fabrication step of multicrystalline silicon solar cells, the co-firing step, through simulations and experiments. The post-processed interstitial iron concentration is simulated according to the as-grown concentration and distribution of iron within a silicon wafer, both in the presence and absence of the phosphorus emitter, and applying different time-temperature profiles for the firing step. The competing effects of dissolution and gettering during the short annealing process are found to be strongly dependant on the as-grown material quality. Furthermore, increasing the temperature of the firing process leads to a higher dissolution of iron, hardly compensated by the higher diffusivity of impurities. A new defect engineering tool is introduced, the extended co-firing, which could allow an enhanced gettering effect within a small additional tim

    Risk factors for thrombotic microangiopathy in allogeneic hematopoietic stem cell recipients receiving GVHD prophylaxis with tacrolimus plus MTX or sirolimus

    Get PDF
    Post-transplant complications.-- et al.Transplantation-associated thrombotic microangiopathy (TA-TMA) is a feared complication of allogeneic hematopoietic SCT (HSCT) owing to its high mortality rate. The use of calcineurin inhibitors or sirolimus (SIR) for GVHD prophylaxis has been suggested as a potential risk factor. However, the impact of tacrolimus (TAC) and SIR combinations on the increased risk of TA-TMA is currently not well defined. We retrospectively analyzed the incidence of TA-TMA in 102 allogeneic HSCT recipients who consecutively received TAC plus SIR (TAC/SIR) (n=68) or plus MTX (TAC/MTX)±ATG (n=34) for GVHD prophylaxis. No significant differences were observed in the incidence of TA-TMA between patients receiving TAC/SIR vs TAC/MTX±ATG (7.4% vs 8.8%, P=0.8). Only grade III-IV acute GVHD, previous HSCT and serum levels of TAC >25 ng/mL were associated with a greater risk of TA-TMA. Patients developing TA-TMA have significantly poorer survival (P<0.001); however, TA-TMA ceased to be an independent prognostic factor when it was included in a multivariate model. In conclusion, the combination of TAC/SIR does not appear to pose a higher risk of TA-TMA. By contrast, we identified three different risk groups for developing TA-TMA.Peer Reviewe

    Implementation of a Monte Carlo method to model photon conversion for solar cells.

    Get PDF
    A physical model describing different photon conversion mechanisms is presented in the context of photovoltaic applications. To solve the resulting system of equations, a Monte Carlo ray-tracing model is implemented, which takes into account the coupling of the photon transport phenomena to the non-linear rate equations describing luminescence. It also separates the generation of rays from the two very different sources of photons involved (the sun and the luminescence centers). The Monte Carlo simulator presented in this paper is proposed as a tool to help in the evaluation of candidate materials for up- and downconversion. Some application examples are presented, exploring the range of values that the most relevant parameters describing the converter should have in order to give significant gain in photocurrent

    Mono-crystalline silicon wafers manufactured by casting methods: Optoelectronic, structural and solar cell study

    Full text link
    1) Introduction 2) The Quasi-mono, pseudo-mono, mono-like ERA. 3) Manufacturing mono-cast ingots: COST (seed recycling) 4) Summary and findings 5) Current status at DCWafer

    Larvas de insectos: una nueva plataforma para producir proteínas recombinantes de interés comercial

    Get PDF
    En Biotecnología, la expresión de proteínas recombinantes es un campo en constante crecimiento y para el cual se utilizan diferentes huéspedes. Como algunas proteínas valiosas no se pueden producir utilizando los sistemas tradicionales, los insectos del orden Lepidoptera infectados con baculovirus recombinantes han surgido como una interesante alternativa para expresar altos niveles de proteínas, especialmente aquellas con modificaciones postraduccionales. Los insectos lepidópteros, los cuales se encuentran ampliamente distribuidos en el mundo, pueden utilizarse como pequeñas fábricas de proteínas, llamadas las nuevas ?biofábricas?. En países asiáticos, algunas especies como Bombyx mori (gusano de seda) se han utilizado para la producción de un gran número de proteínas recombinantes para diferentes usos industriales, en ciencia básica y aplicada, varias de las cuales ya han sido comercializadas. Por otro lado, especies como Spodoptera frugiperda, Heliothis virescens, Rachiplusia nu, Helicoverpa zea, y Trichoplusia ni están ampliamente distribuidas en el mundo occidental y Europa y constituyen plagas que también pueden aprovecharse para la expresión de proteínas. La utilización de larvas de insectos para estos fines biotecnológicos tiene menor costo en comparación a los cultivos de líneas celulares de insectos, y una gran variedad de proteínas recombinantes, incluyendo enzimas, hormonas y vacunas, se han expresado eficientemente con actividad biológica intacta. Por lo tanto, la expresión de proteínas farmacéuticas usando larvas o capullos de insectos se ha convertido en una alternativa muy atractiva. Este documento describe el uso de larvas de insectos como alternativa para producir proteínas recombinantes comerciales.In Biotechnology, the expression of recombinant proteins is a constantly growing field and different hosts are used for this purpose. Some valuable proteins cannot be produced using traditionalsystems. Insects from the order Lepidoptera infected with recombinant baculovirus have appeared as a good choice to express high levels of proteins, especially those with post-translational modifications. Lepidopteran insects, which are extensively distributed in the world, can be used as small protein factories, the new biofactories. Species like Bombyx mori (silkworm) have been explored in Asian countries to produce a great number of recombinant proteins for academic and industrial purposes. Several recombinant proteins produced in silkworms have already been commercialized. On the other hand, species like Spodoptera frugiperda, Heliothis virescens, Rachiplusia nu, Helicoverpa zea and Trichoplusia ni are widely distributed in both the occidental world and Europe. The expression of recombinant proteins in larvae has the advantage of its low cost in comparison with insect cell cultures. A wide variety of recombinant proteins, including enzymes, hormones and vaccines, have been efficiently expressed with intact biological activity. The expression of pharmaceutically relevant proteins, including cell/viral surface proteins and membrane proteins, using insect larvae or cocoons, has become very attractive. This review provides an overview of the production of recombinant proteins using insect larvae.Fil: Targovnik, Alexandra Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Arregui, Mariana Bernadett. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Mc Callum, Gregorio Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Smith, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Bracco, Lautaro Fidel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Navarro del Cañizo, Agustín A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Wolman, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Cascone, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Miranda, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentin
    corecore