291 research outputs found

    Antisymmetric tensor unparticle and the radiative lepton flavor violating decays

    Full text link
    We study the contribution of the tensor unparticle mediation to the branching ratios of the radiative lepton flavor violating decays and predict a restriction region for free parameters of the scenario by using experimental upper limits. We observe that the branching ratios of the radiative lepton flavor violating decays are sensitive to the fundamental mass scales of the scenario and to the scale dimension of antisymmetric tensor unparticle. We obtain a more restricted set for the free parameters in the case of the \mu\rightarrow e \gamma decayComment: 15 pages, 10 figure

    Charged Higgs-boson production in association with an electron and a neutrino at electron-positron colliders

    Full text link
    We present results of a calculation of the cross section for the production of a charged Higgs boson in association with an electron and a neutrino at electron-positron colliders (e+ e- -> H+ e- nu_e-bar, H- e+ nu_e). We study predictions for the cross section in the Minimal Supersymmetric Standard Model (MSSM) and the Two Higgs Doublet Model (THDM), highlighting possible differences. The process is effectively loop-induced in both models. Hence, the cross section is expected to be strongly model-dependent. Most notably, due to the presence of superpartners, the MSSM amplitude contains Feynman graphs of pentagon-type, which are not present in the THDM. This is the first complete one-loop calculation of the cross section for this process in the THDM and the MSSM. For both models, so far, only approximate results with limited ranges of validity were available. Our main aim here is to clarify several open questions in the existing literature on this process. Specifically, we will discuss the validity of the Heavy Fermion loop approximation in both models, and of the Fermion/Sfermion loop approximation in the MSSM.Comment: 21 pages, 8 figures, 1 tabl

    Model-Independent Searches for New Quarks at the LHC

    Get PDF
    New vector-like quarks can have sizable couplings to first generation quarks without conflicting with current experimental constraints. The coupling with valence quarks and unique kinematics make single production the optimal discovery process. We perform a model-independent analysis of the discovery reach at the Large Hadron Collider for new vector-like quarks considering single production and subsequent decays via electroweak interactions. An early LHC run with 7 TeV center of mass energy and 1 fb-1 of integrated luminosity can probe heavy quark masses up to 1 TeV and can be competitive with the Tevatron reach of 10 fb-1. The LHC with 14 TeV center of mass energy and 100 fb-1 of integrated luminosity can probe heavy quark masses up to 3.7 TeV for order one couplings.Comment: 37 pages, 11 figures, 7 table

    Heavy Neutrinos and Lepton Flavour Violation in Left-Right Symmetric Models at the LHC

    Get PDF
    We discuss lepton flavour violating processes induced in the production and decay of heavy right-handed neutrinos at the LHC. Such particles appear in left-right symmetrical extensions of the Standard Model as the messengers of neutrino mass generation, and can have masses at the TeV scale. We determine the expected sensitivity on the right-handed neutrino mixing matrix, as well as on the right-handed gauge boson and heavy neutrino masses. By comparing the sensitivity of the LHC with that of searches for low energy LFV processes, we identify favourable areas of the parameter space to explore the complementarity between LFV at low and high energies.Comment: 34 pages, 16 figures, PRD versio

    The lepton flavor violating decays ZliljZ\to l_i l_j in the simplest little Higgs model

    Full text link
    In the simplest little Higgs model the new flavor-changing interactions between heavy neutrinos and the Standard Model leptons can generate contributions to some lepton flavor violating decays of ZZ-boson at one-loop level, such as Zτ±μZ \to \tau^{\pm}\mu^{\mp}, Zτ±eZ\to \tau^{\pm}e^{\mp}, and Zμ±eZ \to \mu^{\pm}e^{\mp}. We examine the decay modes, and find that the branching ratios can reach 10710^{-7} for the three decays, which should be accessible at the GigaZZ option of the ILC.Comment: 12 pages, 9 figure

    Tree-level FCNC in the B system: from CP asymmetries to rare decays

    Get PDF
    Tree-level Flavor-Changing Neutral Currents (FCNC) are characteristic of models with extra vector-like quarks. These new couplings can strongly modify the B^0 CP asymmetries without conflicting with low--energy constraints. In the light of a low CP asymmetry in B --> J/\psi K_{S}, we discuss the implications of these contributions. We find that even these low values can be easily accommodated in these models. Furthermore, we show that the new data from B factories tend to favor an O(20) enhancement of the b --> d l \bar{l} transition over the SM expectation.Comment: 5 pages, 4 figures. Accepted version in PRD. Updated analysis with the new results from BaBar and BELLE. Figures enlarged, small typos corrected. Conclusions essentially unchange

    The effects of non-universal extra dimensions on the radiative lepton flavor decays \mu\to e\gamma and \tau\to \mu\gamma in the two Higgs doublet model

    Full text link
    We study the effect of non-universal extra dimensions on the branching ratios of the lepton flavor violating processes \mu\to e\gamma and \tau\to \mu\gamma in the general two Higgs doublet model. We observe that these effects are small for a single extra dimension, however, in the case of two extra dimensions there is a considerable enhancement in the additional contributions.Comment: 16 Pages, 9 Figure

    SO(10): a possible Scenario for new Physics in the Neutrino Sector and Baryogenesis

    Get PDF
    The implications on neutrino physics and on the dynamical generation of the baryonic asymmetry of a class of SO(10)SO(10) non-supersymmetric models are discussed.Comment: 4 pages, LaTex (requires espcrc2.sty which is appended). Contribution to the Proceedings of Trends in Astroparticle Physic

    Flavour physics of the RS model with KK masses reachable at LHC

    Full text link
    The version of the higher-dimensional Randall-Sundrum (RS) model with matter in the bulk, which addresses the gauge hierarchy problem, has additional attractive features. In particular, it provides an intrinsic geometrical mechanism that can explain the origin of the large mass hierarchies among the Standard Model fermions. Within this context, a good solution for the gauge hierarchy problem corresponds to low masses for the Kaluza-Klein (KK) excitations of the gauge bosons. Some scenarios have been proposed in order to render these low masses (down to a few TeV) consistent with precision electroweak measurements. Here, we give specific and complete realizations of this RS version with small KK masses, down to 1 TeV, which are consistent with the entire structure of the fermions in flavour space: (1) all the last experimental data on quark/lepton masses and mixing angles (including massive neutrinos of Dirac type) are reproduced, (2) flavour changing neutral current constraints are satisfied and (3) the effective suppression scales of non-renormalizable interactions (in the physical basis) are within the bounds set by low energy flavour phenomenology. Our result, on the possibility of having KK gauge boson modes as light as a few TeV, constitutes one of the first theoretical motivations for experimental searches of direct signatures at the LHC collider, of this interesting version of the RS model which accommodates fermion masses.Comment: 27 pages, Latex file. References and comments adde

    On MSSM charged Higgs boson production in association with an electroweak W boson at electron positron colliders

    Get PDF
    We present a calculation of the cross section for the process e+ e- --> W+/- H-/+ in the minimal supersymmetric standard model (MSSM) and the Two Higgs Doublet Model (THDM). We study the basic features of the MSSM prediction for some distinctive parameter scenarios. We find large effects from virtual squarks for scenarios with large mixing in the stop sector which can lead to a cross section vastly different from a THDM with identical Higgs sector parameters. We investigate this interesting behaviour in more detail by thoroughly scanning the MSSM parameter space for regions of large cross section. For a charged Higgs boson too heavy to be pair-produced at such a machine, it turns out that a large MSSM cross section with a good chance of observation is linked to a squark mass scale below 600 GeV and a considerable amount of mixing in either the stop and sbottom sector.Comment: 25 pages, 10 figures (two in colour). Substantially improved on the MSSM parameter restrictions taken into account. Added some reference
    corecore