7 research outputs found

    Mechanistic Insight into Biopolymer Induced Iron Oxide Mineralization Through Quantification of Molecular Bonding

    No full text
    Microbial production of iron (oxy)hydroxides on polysaccharide rich biopolymers occurs on such a vast scale that it impacts the global iron cycle and has been responsible for major biogeochemical events. Yet the physiochemical controls these biopolymers exert on iron (oxy)hydroxide formation are poorly understood. Here we used dynamic force spectroscopy to directly probe binding between complex, model and natural microbial polysaccharides and common iron (oxy)hydroxides. Applying nucleation theory to our results demonstrates that if there is a strong attractive interaction between biopolymers and iron (oxy)hydroxides, the biopolymers decrease the nucleation barriers, thus promoting mineral nucleation. These results are also supported by nucleation studies and density functional theory. Spectroscopic and thermogravimetric data provide insight into the subsequent growth dynamics and show that the degree and strength of water association with the polymers can explain the influence on iron (oxy)hydroxide transformation rates. <br /

    Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate

    Get PDF
    Despite its importance in many industrial, geological and biological processes, the mechanism of crystallization from supersaturated solutions remains a matter of debate. Recent discoveries show that in many solution systems nanometre-sized structural units are already present before nucleation. Still little is known about the structure and role of these so-called pre-nucleation clusters. Here we present a combination of in situ investigations, which show that for the crystallization of calcium phosphate these nanometre-sized units are in fact calcium triphosphate complexes. Under conditions in which apatite forms from an amorphous calcium phosphate precursor, these complexes aggregate and take up an extra calcium ion to form amorphous calcium phosphate, which is a fractal of Ca2(HPO4)32− clusters. The calcium triphosphate complex also forms the basis of the crystal structure of octacalcium phosphate and apatite. Finally, we demonstrate how the existence of these complexes lowers the energy barrier to nucleation and unites classical and non-classical nucleation theories

    Non-DNA Methods for Biological Signatures

    No full text
    Schaldach CM, deYoreo JJ, Esposito A, et al. Non-DNA Methods for Biological Signatures. In: Breeze RG, Budowle B, Schutzer SE, eds. Microbial Forensics. Elsevier Academic Press. Burlington; In Press: 262-295
    corecore