2,375 research outputs found

    Self-force on a scalar charge in radial infall from rest using the Hadamard-WKB expansion

    Full text link
    We present an analytic method based on the Hadamard-WKB expansion to calculate the self-force for a particle with scalar charge that undergoes radial infall in a Schwarzschild spacetime after being held at rest until a time t = 0. Our result is valid in the case of short duration from the start. It is possible to use the Hadamard-WKB expansion in this case because the value of the integral of the retarded Green's function over the particle's entire past trajectory can be expressed in terms of two integrals over the time period that the particle has been falling. This analytic result is expected to be useful as a check for numerical prescriptions including those involving mode sum regularization and for any other analytical approximations to self-force calculations.Comment: 22 pages, 2 figures, Physical Review D version along with the corrections given in the erratu

    EUS-Guided Pancreatic Cyst Ablation: a Clinical and Technical Review

    Get PDF
    Purpose of Review Pancreatic cystic lesions represent a growing public health dilemma, particularly as our population ages and cross-sectional imaging becomes more sensitive. Mucinous cysts carry a clinically significant risk of developing pancreatic cancer, which carries an extremely poor prognosis. Determining which cysts will develop cancer may be challenging, and surgical resection of the pancreas carries significant morbidity. The goal of this paper is to review the rationale for cyst ablation and discuss prior and current research on cyst ablation techniques and efficacy. Indications, contraindications, and factors related to optimal patient selection are outlined. Recent Findings Endoscopic ultrasound-guided chemoablation of pancreatic cysts has been performed in neoplastic cysts, with varying levels of efficacy. Safety concerns arose due to the risk of pancreatitis in alcohol-based treatments; however, the most recent data using a non-alcohol chemoablation cocktail suggests that ablation is effective without the need for alcohol, resulting in a significantly more favorable adverse event profile. Summary Endoscopic ultrasound-guided chemoablation of neoplastic pancreatic cysts is a promising, minimally invasive approach for treatment of cysts, with recent significant advances in safety and efficacy, suggesting that it should play a role in the treatment algorithm

    Gravitational Self Force in a Schwarzschild Background and the Effective One Body Formalism

    Full text link
    We discuss various ways in which the computation of conservative Gravitational Self Force (GSF) effects on a point mass moving in a Schwarzschild background can inform us about the basic building blocks of the Effective One-Body (EOB) Hamiltonian. We display the information which can be extracted from the recently published GSF calculation of the first-GSF-order shift of the orbital frequency of the last stable circular orbit, and we combine this information with the one recently obtained by comparing the EOB formalism to high-accuracy numerical relativity (NR) data on coalescing binary black holes. The information coming from GSF data helps to break the degeneracy (among some EOB parameters) which was left after using comparable-mass NR data to constrain the EOB formalism. We suggest various ways of obtaining more information from GSF computations: either by studying eccentric orbits, or by focussing on a special zero-binding zoom-whirl orbit. We show that logarithmic terms start entering the post-Newtonian expansions of various (EOB and GSF) functions at the fourth post-Newtonian (4PN) level, and we analytically compute the first logarithm entering a certain, gauge-invariant "redshift" GSF function (defined along the sequence of circular orbits).Comment: 44 page

    Background, current status, and prognosis of the ongoing slush hydrogen technology development program for the NASP

    Get PDF
    Among the Hydrogen Projects at the NASA Lewis Research Center (NASA LeRC), is the task of implementing and managing the Slush Hydrogen (SLH2) Technology Program for the United States' National AeroSpace Plane Joint Program Office (NASP JPO). The objectives of this NASA LeRC program are to provide verified numerical models of fluid production, storage, transfer, and feed systems and to provide verified design criteria for other engineered aspects of SLH2 systems germane to a NASP. The pursuit of these objectives is multidimensional, covers a range of problem areas, works these to different levels of depth, and takes advantage of the resources available in private industry, academia, and the U.S. Government. A summary of the NASA LeRC overall SLH2 program plan, is presented along with its implementation, the present level of effort in each of the program areas, some of the results already in hand, and the prognosis for the effort in the immediate future

    Noncommutative Complex Scalar Field and Casimir Effect

    Full text link
    A noncommutative complex scalar field, satisfying the deformed canonical commutation relations proposed by Carmona et al. [27]-[31], is constructed. Using these noncommutative deformed canonical commutation relations, a model describing the dynamics of the noncommutative complex scalar field is proposed. The noncommutative field equations are solved, and the vacuum energy is calculated to the second order in the parameter of noncommutativity. As an application to this model, the Casimir effect, due to the zero point fluctuations of the noncommutative complex scalar field, is considered. It turns out that in spite of its smallness, the noncommutativity gives rise to a repulsive force at the microscopic level, leading to a modifed Casimr potential with a minimum at the point amin= racine(5/84){\pi}{\theta}.Comment: Revtex style, 28 page

    An introduction to quantum gravity

    Full text link
    After an overview of the physical motivations for studying quantum gravity, we reprint THE FORMAL STRUCTURE OF QUANTUM GRAVITY, i.e. the 1978 Cargese Lectures by Professor B.S. DeWitt, with kind permission of Springer. The reader is therefore introduced, in a pedagogical way, to the functional integral quantization of gravitation and Yang-Mills theory. It is hoped that such a paper will remain useful for all lecturers or Ph.D. students who face the task of introducing (resp. learning) some basic concepts in quantum gravity in a relatively short time. In the second part, we outline selected topics such as the braneworld picture with the same covariant formalism of the first part, and spectral asymptotics of Euclidean quantum gravity with diffeomorphism-invariant boundary conditions. The latter might have implications for singularity avoidance in quantum cosmology.Comment: 68 pages, Latex file. Sections from 2 to 17 are published thanks to kind permission of Springe

    Next-to-leading term of the renormalized stress-energy tensor of the quantized massive scalar field in Schwarzschild spacetime. The back reaction

    Full text link
    The next-to-leading term of the renormalized stress-energy tensor of the quantized massive field with an arbitrary curvature coupling in the spacetime of the Schwarzschild black hole is constructed. It is achieved by functional differentiation of the DeWitt-Schwinger effective action involving coincidence limit of the Hadamard-Minakshisundaram-DeWitt-Seely coefficients a3a_{3} and a4.a_{4}. The back reaction of the quantized field upon the Schwarzschild black hole is briefly discussed

    Quantum Equivalence of Massive Antisymmetric Tensor Field Models in Curved Space

    Full text link
    We study the effective actions for massive rank-2 and rank-3 antisymmetric tensor field models in curved space-time. These models are classically equivalent to massive vector field and massive scalar field with minimal coupling to gravity respectively. We prove that effective action for massive rank-2 antisymmetric tensor field is exactly equal to one for massive vector field and effective action for massive rank-3 antisymmetric tensor field is exactly equal to one for massive scalar field. Prove is based on an identity for mass-dependent zeta-functions associated with Laplacians acting on pp-forms.Comment: 8 pages, REVTeX fil

    A universal constraint between charge and rotation rate for degenerate black holes surrounded by matter

    Full text link
    We consider stationary, axially and equatorially symmetric systems consisting of a central rotating and charged degenerate black hole and surrounding matter. We show that a2+Q2=M2a^2+Q^2=M^2 always holds provided that a continuous sequence of spacetimes can be identified, leading from the Kerr-Newman solution in electrovacuum to the solution in question. The quantity a=J/Ma=J/M is the black hole's intrinsic angular momentum per unit mass, QQ its electric charge and MM the well known black hole mass parameter introduced by Christodoulou and Ruffini.Comment: 19 pages, 2 figures, replaced with published versio

    Quantum Effects in the Spacetime of a Magnetic Flux Cosmic String

    Full text link
    In this work we compute the vacuum expectation values of the energy-momentum tensor and the average value of a massive, charged scalar field in the presence of a magnetic flux cosmic string for both zero- and finite-temperature cases.Comment: To appear in the Int. Journal of Modern Phys. A (special issue). Proceedings of the Second International Londrina Winter School on Mathematical Methods in Physics, Londrina, Brazil, August 200
    • …
    corecore