17 research outputs found

    Hif-2α-Dependent Induction of miR-29a Restrains TH1 Activity During T Cell Dependent Colitis

    Get PDF
    Metabolic imbalance leading to inflammatory hypoxia and stabilization of hypoxia-inducible transcription factors (HIFs) is a hallmark of inflammatory bowel diseases. We hypothesize that HIF could be stabilized in CD4+ T cells during intestinal inflammation and alter the functional responses of T cells via regulation of microRNAs. Our assays reveal markedly increased T cell-intrinsic hypoxia and stabilization of HIF protein during experimental colitis. microRNA screen in primary CD4+ T cells points us towards miR-29a and our subsequent studies identify a selective role for HIF-2α in CD4-cell-intrinsic induction of miR-29a during hypoxia. Mice with T cell-intrinsic HIF-2α deletion display elevated T-bet (target of miR-29a) levels and exacerbated intestinal inflammation. Mice with miR-29a deficiency in T cells show enhanced intestinal inflammation. T cell-intrinsic overexpression of HIF-2α or delivery of miR-29a mimetic dampen TH1-driven colitis. In this work, we show a previously unrecognized function for hypoxia-dependent induction of miR-29a in attenuating TH1-mediated inflammation

    Clinical Implications of Pediatric Colonic Eosinophilia

    Get PDF
    Objective: Pediatric colonic eosinophilia represents a confounding finding with a wide differential. It is often difficult to determine which children may progress to inflammatory bowel disease (IBD), which have an eosinophilic colitis (EC), and which may have no underlying pathology. There is little guidance for the practitioner on the approach to these patients. To define the clinical presentations of colonic eosinophilia and identify factors which may aid in diagnosis we reviewed patients with colonic eosinophilia and the clinicopathologic factors associated with their diagnoses. Mehtods: An 8-year retrospective chart review of children whose histopathology identified colonic eosinophilia (N = 72) compared to controls with normal biopsies (N = 35). Results: Patients with colonic eosinophilia had increased eosinophils/high-power field compared to controls (P 1 colonoscopy and 68% of these had change from initial diagnoses. Conclusions: There are 3 main phenotypes of children with colonic eosinophilia. Signs of chronic systemic inflammation raise suspicion for IBD. Peripheral eosinophilia and male sex are associated with EC. A significant percent of children with colonic eosinophilia do not have colonic disease. Eosinophils/high-power field is not reliable to differentiate etiologies. Repeat colonoscopies may be required to reach final diagnoses

    Hypoxia-inducible factor-1 alpha–dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa

    Get PDF
    Recent studies have demonstrated dramatic shifts in metabolic supply-and-demand ratios during inflammation, a process resulting in localized tissue hypoxia within inflammatory lesions (“inflammatory hypoxia”). As part of the adaptive immune response, T cells are recruited to sites of inflammatory hypoxia. Given the profound effects of hypoxia on gene regulation, we hypothesized that T-cell differentiation is controlled by hypoxia. To pursue this hypothesis, we analyzed the transcriptional consequences of ambient hypoxia (1% oxygen) on a broad panel of T-cell differentiation factors. Surprisingly, these studies revealed selective, robust induction of FoxP3, a key transcriptional regulator for regulatory T cells (Tregs). Studies of promoter binding or loss- and gain-of-function implicated hypoxia-inducible factor (HIF)-1α in inducing FoxP3. Similarly, hypoxia enhanced Treg abundance in vitro and in vivo. Finally, Treg-intrinsic HIF-1α was required for optimal Treg function and Hif1a–deficient Tregs failed to control T-cell–mediated colitis. These studies demonstrate that hypoxia is an intrinsic molecular cue that promotes FoxP3 expression, in turn eliciting potent antiinflammatory mechanisms to limit tissue damage in conditions of reduced oxygen availability

    Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis

    Get PDF
    Central to inflammatory bowel disease (IBD) pathogenesis is loss of mucosal barrier function. Emerging evidence implicates extracellular adenosine signaling in attenuating mucosal inflammation. We hypothesized that adenosinemediated protection from intestinal barrier dysfunction involves tissue-specific signaling through the A2B adenosine receptor (Adora2b) at the intestinal mucosal surface. To address this hypothesis, we combined pharmacologic studies and studies in mice with global or tissue-specific deletion of the Adora2b receptor. Adora2b / mice experienced a significantly heightened severity of colitis, associated with a more acute onset of disease and loss of intestinal epithelial barrier function. Comparison of mice with Adora2b deletion on vascular endothelial cells (Adora2bfl/flVeCadCre þ ) or intestinal epithelia (Adora2bfl/flVillinCre þ ) revealed a selective role for epithelial Adora2b signaling in attenuating colonic inflammation. In vitro studies with Adora2b knockdown in intestinal epithelial cultures or pharmacologic studies highlighted Adora2b-driven phosphorylation of vasodilator-stimulated phosphoprotein (VASP) as a specific barrier repair response. Similarly, in vivo studies in genetic mouse models or treatment studies with an Adora2b agonist (BAY 60-6583) recapitulate these findings. Taken together, our results suggest that intestinal epithelial Adora2b signaling provides protection during intestinal inflammation via enhancing mucosal barrier responses
    corecore