136 research outputs found
A quantitative comparison of cognitive performance and patient-reported symptoms in preoperative lower-grade glioma patients from two Dutch Hospitals
Background Protocols for assessment of (neuro)psychological outcomes in lower-grade glioma patients vary between hospitals. This potentially complicates generalization of these outcomes. We compared standardized scores on tests of two frequently impaired cognitive domains (attention and executive functioning (EF)), and two relevant patient-reported outcomes (PROs; depression and fatigue) of two neuro-oncological hospitals that use different measurement instruments. Material and Methods Data were used from preoperative assessments of patients with (IDH-mut) WHO grade II/III glioma tested between 2007 and 2021 at Amsterdam UMC (AMS) or at Elisabeth-Tweesteden Hospital Tilburg (ETZ). AMS patients were referred for (neuro)psychological assessment based on physician and patient preference (paper and pencil tests), whereas all ETZ patients routinely undergo screening (computerized tests). To compare scores of the different attention and EF tests we converted patients’ performances to z-scores based on normative data. For cognitive performance, we compared scores of different cognitive flexibility tests (CST vs SAT), processing speed tests (SDC vs LDMT), and Stroop tests (Stroop I and Stroop III). PROs included the CES-D vs HADS-D and the CIS-fatigue vs MVI-general fatigue (AMS vs ETZ, resp.). Differences were tested using Fisher's, χ 2, and Mann-Whitney U tests. Results Assessments were done median 4 weeks (AMS, n=97, range 19-0 weeks) and 1 day (ETZ, n=106; range 14-0 days) preoperatively. Age, sex, tumor location and histology were comparable between cohorts (p>0.05), but the AMS cohort showed significantly more grade III tumors (36% vs 16%) and more awake surgeries (84% vs 46%). Z-scores measuring attention and EF (n=94 and n=95, AMS vs ETZ) were not significantly different (CST vs SAT, percentage with a disorder (z <-1.5SD) 15% vs 13%; SDC vs LDMT 13% vs 14%; Stroop I 11% vs 18%; Stroop III 13% vs 16% at AMS and ETZ, resp.). Percentages of patients with possible depression (CES-D≥16, n=88 and HADS-D≥8, n=106) did not differ significantly between hospitals (28% vs 26%), nor did percentages of patients with severe fatigue (CIS-fatigue≥35, n=88 and MVI-general fatigue (z <-1.5SD), n=38, 42% vs 24% at AMS and ETZ, resp.). Conclusion Standardized scores of glioma patients on cognitive domains (attention and EF) and PROs (depression and fatigue) did not differ between two centers with slightly different samples using different testing protocols. This cautiously suggests that study findings on cognitive functioning and symptoms could be generalized. For research purposes, conjoint use of pooled populations for outcome evaluation could be explored with different samples from other centers using different instruments
Subcutaneous tumor seeding after biopsy in gliomatosis cerebri
We observed a patient with subcutaneous seeding from gliomatosis cerebri with a low-grade histopathology. A 33-year-old woman with neurofibromatosis type 1 presented with progressive headache, diplopia, dysphagia, and a rightward instability. On neurological examination dysarthria, gait ataxia, and left-sided central facial and hypoglossal palsies were determined. MRI of the brain demonstrated diffuse, infiltrative non-enhancing lesions in the pons, both cerebellar hemispheres, the parahippocampal gyrus, and the thalamus. A stereotactic biopsy demonstrated an astrocytoma WHO grade 2. These characteristics confirmed gliomatosis cerebri. Three months later, the patient presented with hydrocephalus and a subcutaneous swelling directly underneath the surgical scar. The subcutaneous swelling was removed and the hydrocephalus was treated by ventriculoperitoneal shunting. Histopathological examination confirmed a subcutaneous manifestation of low-grade oligoastrocytoma. Gliomatosis cerebri with low-grade histology can seed subcutaneously
Ultra-fast deep-learned CNS tumour classification during surgery
Central nervous system tumours represent one of the most lethal cancer types, particularly among children1. Primary treatment includes neurosurgical resection of the tumour, in which a delicate balance must be struck between maximizing the extent of resection and minimizing risk of neurological damage and comorbidity2,3. However, surgeons have limited knowledge of the precise tumour type prior to surgery. Current standard practice relies on preoperative imaging and intraoperative histological analysis, but these are not always conclusive and occasionally wrong. Using rapid nanopore sequencing, a sparse methylation profile can be obtained during surgery4. Here we developed Sturgeon, a patient-agnostic transfer-learned neural network, to enable molecular subclassification of central nervous system tumours based on such sparse profiles. Sturgeon delivered an accurate diagnosis within 40 minutes after starting sequencing in 45 out of 50 retrospectively sequenced samples (abstaining from diagnosis of the other 5 samples). Furthermore, we demonstrated its applicability in real time during 25 surgeries, achieving a diagnostic turnaround time of less than 90 min. Of these, 18 (72%) diagnoses were correct and 7 did not reach the required confidence threshold. We conclude that machine-learned diagnosis based on low-cost intraoperative sequencing can assist neurosurgical decision-making, potentially preventing neurological comorbidity and avoiding additional surgeries
Spatial concordance of DNA methylation classification in diffuse glioma.
BACKGROUND: Intratumoral heterogeneity is a hallmark of diffuse gliomas. DNA methylation profiling is an emerging approach in the clinical classification of brain tumors. The goal of this study is to investigate the effects of intratumoral heterogeneity on classification confidence.
METHODS: We used neuronavigation to acquire 133 image-guided and spatially separated stereotactic biopsy samples from 16 adult patients with a diffuse glioma (7 IDH-wildtype and 2 IDH-mutant glioblastoma, 6 diffuse astrocytoma, IDH-mutant and 1 oligodendroglioma, IDH-mutant and 1p19q codeleted), which we characterized using DNA methylation arrays. Samples were obtained from regions with and without abnormalities on contrast-enhanced T1-weighted and fluid-attenuated inversion recovery MRI. Methylation profiles were analyzed to devise a 3-dimensional reconstruction of (epi)genetic heterogeneity. Tumor purity was assessed from clonal methylation sites.
RESULTS: Molecular aberrations indicated that tumor was found outside imaging abnormalities, underlining the infiltrative nature of this tumor and the limitations of current routine imaging modalities. We demonstrate that tumor purity is highly variable between samples and explains a substantial part of apparent epigenetic spatial heterogeneity. We observed that DNA methylation subtypes are often, but not always, conserved in space taking tumor purity and prediction accuracy into account.
CONCLUSION: Our results underscore the infiltrative nature of diffuse gliomas and suggest that DNA methylation subtypes are relatively concordant in this tumor type, although some heterogeneity exists
Human voltage-gated Na+ and K+ channel properties underlie sustained fast AP signaling
Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties: Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of voltage-gated sodium (Na+) and potassium (K+) currents in human pyramidal neurons can explain their fast input-output properties. Human Na+ and K+ currents exhibited more depolarized voltage dependence, slower inactivation, and faster recovery from inactivation compared with their mouse counterparts. Computational modeling showed that despite lower Na+ channel densities in human neurons, the biophysical properties of Na+ channels resulted in higher channel availability and contributed to fast AP kinetics stability. Last, human Na+ channel properties also resulted in a larger dynamic range for encoding of subthreshold membrane potential changes. Thus, biophysical adaptations of voltage-gated Na+ and K+ channels enable fast input-output properties of large human pyramidal neurons
High Expression of Wee1 Is Associated with Poor Disease-Free Survival in Malignant Melanoma: Potential for Targeted Therapy
Notoriously resistant malignant melanoma is one of the most increasing forms of cancer worldwide; there is thus a precarious need for new treatment options. The Wee1 kinase is a major regulator of the G2/M checkpoint, and halts the cell cycle by adding a negative phosphorylation on CDK1 (Tyr15). Additionally, Wee1 has a function in safeguarding the genome integrity during DNA synthesis. To assess the role of Wee1 in development and progression of malignant melanoma we examined its expression in a panel of paraffin-embedded patient derived tissue of benign nevi and primary- and metastatic melanomas, as well as in agarose-embedded cultured melanocytes. We found that Wee1 expression increased in the direction of malignancy, and showed a strong, positive correlation with known biomarkers involved in cell cycle regulation: Cyclin A (p<0.0001), Ki67 (p<0.0001), Cyclin D3 (p = 0.001), p21Cip1/WAF1 (p = 0.003), p53 (p = 0.025). Furthermore, high Wee1 expression was associated with thicker primary tumors (p = 0.001), ulceration (p = 0.005) and poor disease-free survival (p = 0.008). Transfections using siWee1 in metastatic melanoma cell lines; WM239WTp53, WM45.1MUTp53 and LOXWTp53, further support our hypothesis of a tumor promoting role of Wee1 in melanomas. Whereas no effect was observed in LOX cells, transfection with siWee1 led to accumulation of cells in G1/S and S phase of the cell cycle in WM239 and WM45.1 cells, respectively. Both latter cell lines displayed DNA damage and induction of apoptosis, in the absence of Wee1, indicating that the effect of silencing Wee1 may not be solely dependent of the p53 status of the cells. Together these results reveal the importance of Wee1 as a prognostic biomarker in melanomas, and indicate a potential role for targeted therapy, alone or in combination with other agents
Glioblastoma-derived spheroid cultures as an experimental model for analysis of EGFR anomalies
Glioblastoma cell cultures in vitro are frequently used for investigations on the biology of tumors or new therapeutic approaches. Recent reports have emphasized the importance of cell culture type for maintenance of tumor original features. Nevertheless, the ability of GBM cells to preserve EGFR overdosage in vitro remains controversial. Our experimental approach was based on quantitative analysis of EGFR gene dosage in vitro both at DNA and mRNA level. Real-time PCR data were verified with a FISH method allowing for a distinction between EGFR amplification and polysomy 7. We demonstrated that EGFR amplification accompanied by EGFRwt overexpression was maintained in spheroids, but these phenomena were gradually lost in adherent culture. We noticed a rapid decrease of EGFR overdosage already at the initial stage of cell culture establishment. In contrast to EGFR amplification, the maintenance of polysomy 7 resulted in EGFR locus gain and stabilization even in long-term adherent culture in serum presence. Surprisingly, the EGFRwt expression pattern did not reflect the latter phenomenon and we observed no overexpression of the tested gene. Moreover, quantitative analysis demonstrated that expression of the truncated variant of receptor—EGFRvIII was preserved in GBM-derived spheroids at a level comparable to the initial tumor tissue. Our findings are especially important in the light of research using glioblastoma culture as the experimental model for testing novel EGFR-targeted therapeutics in vitro, with special emphasis on the most common mutated form of receptor—EGFRvIII
- …