1,145 research outputs found

    Prediction of transient tumor enlargement using MRI tumor texture after radiosurgery on vestibular schwannoma

    Get PDF
    Purpose: Vestibular schwannomas (VSs) are uncommon benign brain tumors, generally treated using Gamma Knife radiosurgery (GKRS). However, due to the possible adverse effect of transient tumor enlargement (TTE), large VS tumors are often surgically removed instead of treated radiosurgically. Since microsurgery is highly invasive and results in a significant increased risk of complications, GKRS is generally preferred. Therefore, prediction of TTE for large VS tumors can improve overall VS treatment and enable physicians to select the most optimal treatment strategy on an individual basis. Currently, there are no clinical factors known to be predictive for TTE. In this research, we aim at predicting TTE following GKRS using texture features extracted from MRI scans. Methods: We analyzed clinical data of patients with VSs treated at our

    BOOTSTRAPPED CNNS FOR BUILDING SEGMENTATION ON RGB-D AERIAL IMAGERY

    Get PDF
    Detection of buildings and other objects from aerial images has various applications in urban planning and map making. Automated building detection from aerial imagery is a challenging task, as it is prone to varying lighting conditions, shadows and occlusions. Convolutional Neural Networks (CNNs) are robust against some of these variations, although they fail to distinguish easy and difficult examples. We train a detection algorithm from RGB-D images to obtain a segmented mask by using the CNN architecture DenseNet. First, we improve the performance of the model by applying a statistical re-sampling technique called Bootstrapping and demonstrate that more informative examples are retained. Second, the proposed method outperforms the non-bootstrapped version by utilizing only one-sixth of the original training data and it obtains a precision-recall break-even of 95.10 % on our aerial imagery dataset

    The progeroid phenotype of Ku80 deficiency Is dominant over DNA-PK CS deficiency

    Get PDF
    Ku80 and DNA-PKCS are both involved in the repair of double strand DNA breaks via the nonhomologous end joining (NHEJ) pathway. While ku80-/- mice exhibit a severely reduced lifespan and size, this phenotype is less pronounced in dna-pkcs -/- mice. However, these observations are based on independent studies with varying genetic backgrounds. Here, we generated ku80-/-, dna-pkcs -/- and double knock out mice in a C57Bl6/J*FVB F1 hybrid background and compared their lifespan, end of life pathology and mutation frequency in liver a

    A fast Monte Carlo algorithm for site or bond percolation

    Full text link
    We describe in detail a new and highly efficient algorithm for studying site or bond percolation on any lattice. The algorithm can measure an observable quantity in a percolation system for all values of the site or bond occupation probability from zero to one in an amount of time which scales linearly with the size of the system. We demonstrate our algorithm by using it to investigate a number of issues in percolation theory, including the position of the percolation transition for site percolation on the square lattice, the stretched exponential behavior of spanning probabilities away from the critical point, and the size of the giant component for site percolation on random graphs.Comment: 17 pages, 13 figures. Corrections and some additional material in this version. Accompanying material can be found on the web at http://www.santafe.edu/~mark/percolation

    Fourth order indirect integration method for black hole perturbations: even modes

    Full text link
    On the basis of a recently proposed strategy of finite element integration in time domain for partial differential equations with a singular source term, we present a fourth order algorithm for non-rotating black hole perturbations in the Regge-Wheeler gauge. Herein, we address even perturbations induced by a particle plunging in. The forward time value at the upper node of the (r∗,t)(r^*,t) grid cell is obtained by an algebraic sum of i) the preceding node values of the same cell, ii) analytic expressions, related to the jump conditions on the wave function and its derivatives, iii) the values of the wave function at adjacent cells. In this approach, the numerical integration does not deal with the source and potential terms directly, for cells crossed by the particle world line. This scheme has also been applied to circular and eccentric orbits and it will be object of a forthcoming publication.Comment: This series of papers deals with EMRI for LISA. With the respect to the v1 version, the algorithm has been improved; convergence tests and references have been added; v2 is composed by 23 pages, and 6 figures. Paper accepted by Class. Quantum Gravity for the special issue on Theory Meets Data Analysis at Comparable and Extreme Mass Ratios (Capra and NRDA) at Perimeier Institute in June 201
    • 

    corecore