15 research outputs found

    Особенности дуговой сварки вертикальных швов резервуара

    Get PDF
    Цель работы – расчет режимов сварки и выбор сварочных материалов для получения равнопрочного коррозионностойкого соединения. Сложность изготовления стенок резервуара состоит в том, что резервуар РВС предназначен работать в агрессивной среде и должен выдерживать большое давление и нагрузку на свои основные части. При выборе стали необходимо руководствоваться основными её характеристиками - минимальным пределом текучести, толщиной проката и ударной вязкости.The aim of this work is the calculation of the modes of welding and selection of welding materials to obtain a durable corrosion-resistant connection

    Bone marrow-specific deficiency of nuclear receptor nur77 enhances atherosclerosis

    Get PDF
    RATIONALE: Nuclear receptor Nur77, also known as NR4A1, TR3, or NGFI-B, is expressed in human atherosclerotic lesions in macrophages, endothelial cells, T cells and smooth muscle cells. Macrophages play a critical role in atherosclerosis and the function of Nur77 in lesion macrophages has not yet been investigated. OBJECTIVE: This study aims to delineate the function of Nur77 in macrophages and to assess the effect of bone marrow-specific deficiency of Nur77 on atherosclerosis. METHODS AND RESULTS: We investigated Nur77 in macrophage polarization using bone marrow-derived macrophages (BMM) from wild-type and Nur77-knockout (Nur77(-/-)) mice. Nur77(-/-) BMM exhibit changed expression of M2-specific markers and an inflammatory M1-phenotype with enhanced expression of interleukin-12, IFNgamma, and SDF-1alpha and increased NO synthesis in (non)-stimulated Nur77(-/-) BMM cells. SDF-1alpha expression in nonstimulated Nur77(-/-) BMM is repressed by Nur77 and the chemoattractive activity of Nur77(-/-) BMM is abolished by SDF-1alpha inhibiting antibodies. Furthermore, Nur77(-/-) mice show enhanced thioglycollate-elicited migration of macrophages and B cells. The effect of bone marrow-specific deficiency of Nur77 on atherosclerosis was studied in low density lipoprotein receptor-deficient (Ldlr(-/-)) mice. Ldlr(-/-) mice with a Nur77(-/-)-deficient bone marrow transplant developed 2.1-fold larger atherosclerotic lesions than wild-type bone marrow-transplanted mice. These lesions contain more macrophages, T cells, smooth muscle cells and larger necrotic cores. SDF-1alpha expression is higher in lesions of Nur77(-/-)-transplanted mice, which may explain the observed aggravation of lesion formation. CONCLUSIONS: In conclusion, in bone marrow-derived cells the nuclear receptor Nur77 has an anti-inflammatory function, represses SDF-1alpha expression and inhibits atherosclerosis

    Scavenger receptor class A type I/II determines matrix metalloproteinase-mediated cartilage destruction and chondrocyte death in antigen-induced arthritis.

    No full text
    Contains fulltext : 81583.pdf (publisher's version ) (Closed access)OBJECTIVE: Scavenger receptor class A type I (SR-AI) and SR-AII are expressed by macrophages in particular and bind and internalize a broad range of molecules (including endotoxins, apoptotic bodies, and oxidized low-density lipoprotein). This study was undertaken to investigate the role of SR-AI/II in mediating severe cartilage destruction in antigen-induced arthritis (AIA). METHODS: AIA was induced in the knee joints of SR-AI/II(-/-) mice and wild-type (WT) controls. Joint inflammation and cartilage destruction (chondrocyte death) were measured by examining the histology of total knee joints. Matrix metalloproteinase (MMP)-mediated neoepitopes were measured by immunolocalization using anti-VDIPEN antibodies and chondrocyte activation with anti-S100A8 antibodies. Messenger RNA (mRNA) levels were determined in inflamed synovium using microarray analysis and quantitative reverse transcriptase-polymerase chain reaction. In synovial washouts, cytokines (interleukin-1beta [IL-1beta], IL-10, and tumor necrosis factor alpha) and S100A8/S100A9 were measured using Luminex and enzyme-linked immunosorbent assay. RESULTS: Levels of SR-AI/II mRNA were strongly elevated in inflamed synovium in AIA. On days 2, 8, and 14 after AIA induction, joint inflammation (exudates/infiltrate) was similar between the 2 groups. In WT mice, severe cartilage destruction was found in multiple cartilage surfaces of the inflamed knee joint on day 14 after AIA induction. MMP-mediated matrix destruction ranged between 40% and 60%, and chondrocyte death was prominent in 40-75% of the cartilage surfaces. In striking contrast, in SR-AI/II(-/-) mice, despite comparable joint inflammation, pronounced cartilage destruction was almost completely absent. Levels of IL-1beta and S100A8/S100A9 were significantly lower on days 7 and 14 after AIA induction, but levels of mRNA for various MMPs (MMP-2, MMP-3, MMP-9, and MMP-13) were comparable. CONCLUSION: Our findings indicate that SR-AI and SR-AII are crucial receptors involved in mediating severe cartilage destruction in AIA

    BCG lowers plasma cholesterol levels and delays atherosclerotic lesion progression in mice

    Get PDF
    BACKGROUND AND AIMS: Bacille-Calmette-Guerin (BCG), prepared from attenuated live Mycobacterium bovis, modulates atherosclerosis development as currently explained by immunomodulatory mechanisms. However, whether BCG is pro- or anti-atherogenic remains inconclusive as the effect of BCG on cholesterol metabolism, the main driver of atherosclerosis development, has remained underexposed in previous studies. Therefore, we aimed to elucidate the effect of BCG on cholesterol metabolism in addition to inflammation and atherosclerosis development in APOE*3-Leiden.CETP mice, a well-established model of human-like lipoprotein metabolism. METHODS: Hyperlipidemic APOE*3-Leiden.CETP mice were fed a Western-type diet containing 0.1% cholesterol and were terminated 6 weeks after a single intravenous injection with BCG (0.75 mg; 5 x 10(6) CFU). RESULTS: BCG-treated mice exhibited hepatic mycobacterial infection and hepatomegaly. The enlarged liver (+53%, p = 0.001) coincided with severe immune cell infiltration and a higher cholesterol content (+31%, p = 0.03). Moreover, BCG reduced plasma total cholesterol levels (-34%, p = 0.003), which was confined to reduced nonHDL-cholesterol levels (-36%, p = 0.002). This was due to accelerated plasma clearance of cholesterol from intravenously injected [(14)C]cholesteryl oleate-labelled VLDL-like particles (t(1/2) -41%, p = 0.002) as a result of elevated hepatic uptake (+25%, p = 0.05) as well as reduced intestinal cholestanol and plant sterol absorption (up to -37%, p = 0.003). Ultimately, BCG decreased foam cell formation of peritoneal macrophages (-18%, p = 0.02) and delayed atherosclerotic lesion progression in the aortic root of the heart. BCG tended to decrease atherosclerotic lesion area (-59%, p = 0.08) and reduced lesion severity. CONCLUSIONS: BCG reduces plasma nonHDL-cholesterol levels and delays atherosclerotic lesion formation in hyperlipidemic mice

    Macrophage MicroRNA-155 Promotes Cardiac Hypertrophy and Failure

    No full text
    Cardiac hypertrophy and subsequent heart failure triggered by chronic hypertension represent major challenges for cardiovascular research. Beyond neurohormonal and myocyte signaling pathways, growing evidence suggests inflammatory signaling pathways as therapeutically targetable contributors to this process. We recently reported that microRNA-155 is a key mediator of cardiac inflammation and injury in infectious myocarditis. Here, we investigated the impact of microRNA-155 manipulation in hypertensive heart disease.Genetic loss or pharmacological inhibition of the leukocyte-expressed microRNA-155 in mice markedly reduced cardiac inflammation, hypertrophy, and dysfunction on pressure overload. These alterations were macrophage dependent because in vivo cardiomyocyte-specific microRNA-155 manipulation did not affect cardiac hypertrophy or dysfunction, whereas bone marrow transplantation from wild-type mice into microRNA-155 knockout animals rescued the hypertrophic response of the cardiomyocytes and vice versa. In vitro, media from microRNA-155 knockout macrophages blocked the hypertrophic growth of stimulated cardiomyocytes, confirming that macrophages influence myocyte growth in a microRNA-155-dependent paracrine manner. These effects were at least partly mediated by the direct microRNA-155 target suppressor of cytokine signaling 1 (Socs1) because Socs1 knockdown in microRNA-155 knockout macrophages largely restored their hypertrophy-stimulating potency.Our findings reveal that microRNA-155 expression in macrophages promotes cardiac inflammation, hypertrophy, and failure in response to pressure overload. These data support the causative significance of inflammatory signaling in hypertrophic heart disease and demonstrate the feasibility of therapeutic microRNA targeting of inflammation in heart failure

    High-Density Lipoproteins Exert Pro-inflammatory Effects on Macrophages via Passive Cholesterol Depletion and PKC-NF-kappaB/STAT1-IRF1 Signaling

    No full text
    Membrane cholesterol modulates a variety of cell signaling pathways and functions. While cholesterol depletion by high-density lipoproteins (HDLs) has potent anti-inflammatory effects in various cell types, its effects on inflammatory responses in macrophages remain elusive. Here we show overt pro-inflammatory effects of HDL-mediated passive cholesterol depletion and lipid raft disruption in murine and human primary macrophages in vitro. These pro-inflammatory effects were confirmed in vivo in peritoneal macrophages from apoA-I transgenic mice, which have elevated HDL levels. In line with these findings, the innate immune responses required for clearance of P. aeruginosa bacterial infection in lung were compromised in mice with low HDL levels. Expression analysis, ChIP-PCR, and combinatorial pharmacological and genetic intervention studies unveiled that both native and reconstituted HDL enhance Toll-like-receptor-induced signaling by activating a PKC-NF-kappaB/STAT1-IRF1 axis, leading to increased inflammatory cytokine expression. HDL's pro-inflammatory activity supports proper functioning of macrophage immune responses
    corecore