244 research outputs found

    Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit

    Get PDF
    Background: The currently accepted thesis on nitrogenous fertilizer additions on methane oxidation activity assumes niche partitioning among methanotrophic species, with activity responses to changes in nitrogen content being dependent on the in situ methanotrophic community structure Unfortunately, widely applied tools for microbial community assessment only have a limited phylogenetic resolution mostly restricted to genus level diversity, and not to species level as often mistakenly assumed. As a consequence, intragenus or intraspecies metabolic versatility in nitrogen metabolism was never evaluated nor considered among methanotrophic bacteria as a source of differential responses of methane oxidation to nitrogen amendments. Results: We demonstrated that fourteen genotypically different Methylomonas strains, thus distinct below the level at which most techniques assign operational taxonomic units (OTU), show a versatile physiology in their nitrogen metabolism. Differential responses, even among strains with identical 16S rRNA or pmoA gene sequences, were observed for production of nitrite and nitrous oxide from nitrate or ammonium, nitrogen fixation and tolerance to high levels of ammonium, nitrate, and hydroxylamine. Overall, reduction of nitrate to nitrite, nitrogen fixation, higher tolerance to ammonium than nitrate and tolerance and assimilation of nitrite were general features. Conclusions: Differential responses among closely related methanotrophic strains to overcome inhibition and toxicity from high nitrogen loads and assimilation of various nitrogen sources yield competitive fitness advantages to individual methane-oxidizing bacteria. Our observations proved that community structure at the deepest phylogenetic resolution potentially influences in situ functioning

    Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast-growing methane-oxidizing bacteria

    Get PDF
    Methane-oxidizing bacteria (MOB) have a large potential as a microbial sink for the greenhouse gas methane as well as for biotechnological purposes. However, their application in biotechnology has so far been hampered, in part due to the relative slow growth rate of the available strains. To enable the availability of novel strains, this study compares the isolation of MOB by conventional dilution plating with miniaturized extinction culturing, both performed after an initial enrichment step. The extinction approach rendered 22 MOB isolates from four environmental samples, while no MOB could be isolated by plating. In most cases, extinction culturing immediately yielded MOB monocultures making laborious purification redundant. Both type I (Methylomonas spp.) and type II (Methylosinus sp.) MOB were isolated. The isolated methanotrophic diversity represented at least 11 different strains and several novel species based on 16S rRNA gene sequence dissimilarity. These strains possessed the particulate (100%) and soluble (64%) methane monooxygenase gene. Also, 73% of the strains could be linked to a highly active fast-growing mixed MOB community. In conclusion, miniaturized extinction culturing was more efficient in rapidly isolating numerous MOB requiring little effort and fewer materials, compared with the more widely applied plating procedure. This miniaturized approach allowed straightforward isolation and could be very useful for subsequent screening of desired characteristics, in view of their future biotechnological potential

    Quantifying the likelihood of structural models through a dynamically enhanced powder X-ray diffraction protocol

    Get PDF
    Structurally characterizing new materials is tremendously challenging, especially when single crystal structures are hardly available which is often the case for covalent organic frameworks. Yet, knowledge of the atomic structure is key to establish structure-function relations and enable functional material design. Herein, a new protocol is proposed to unambiguously predict the structure of poorly crystalline materials through a likelihood ordering based on the X-ray diffraction (XRD) pattern. Key of the procedure is the broad set of structures generated from a limited number of building blocks and topologies, which is submitted to operando structural characterization. The dynamic averaging in the latter accounts for the operando conditions and inherent temporal character of experimental measurements, yielding unparalleled agreement with experimental powder XRD patterns. The proposed concept can hence unquestionably identify the structure of experimentally synthesized materials, a crucial step to design next generation functional materials

    Long-term outcomes from the Phase II L-MIND study of tafasitamab (MOR208) plus lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma

    Get PDF
    Tafasitamab; B-cell lymphomaTafasitamab; Linfoma de células BTafasitamab; Limfoma de cèl·lules BTafasitamab (MOR208), an Fc-modified, humanized, anti-CD19 monoclonal antibody, combined with the immunomodulatory drug lenalidomide was clinically active with a good tolerability profile in the open-label, single-arm, phase II L-MIND study of patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) ineligible for autologous stem-cell transplantation. To assess long-term outcomes, we report an updated analysis with ≥35 months’ follow-up. Patients were aged >18 years, had received one to three prior systemic therapies (including ≥1 CD20-targeting regimen) and Eastern Cooperative Oncology Group performance status 0-2. Patients received 28-day cycles of tafasitamab (12 mg/kg intravenously), once weekly during cycles 1-3, then every 2 weeks during cycles 4-12. Lenalidomide (25 mg orally) was administered on days 1-21 of cycles 1-12. After cycle 12, progression-free patients received tafasitamab every 2 weeks until disease progression. The primary endpoint was best objective response rate. After ≥35 months’ follow-up (data cut-off: October 30, 2020), the objective response rate was 57.5% (n=46/80), including a complete response in 40.0% of patients (n=32/80) and a partial response in 17.5% of patients (n=14/80). The median duration of response was 43.9 months (95% confidence interval [95% CI]: 26.1-not reached), the median overall survival was 33.5 months (95% CI: 18.3-not reached) and the median progression-free survival was 11.6 months (95% CI: 6.3-45.7). There were no unexpected toxicities. Subgroup analyses revealed consistent long-term efficacy results across most subgroups of patients. This extended follow-up of L-MIND confirms the long duration of response, meaningful overall survival, and well-defined safety profile of tafasitamab plus lenalidomide followed by tafasitamab monotherapy in patients with relapsed/refractory diffuse large B-cell lymphoma ineligible for autologous stem cell transplantation. ClinicalTrials.gov identifier: NCT02399085

    Combinations of idelalisib with rituximab and/or bendamustine in patients with recurrent indolent non-Hodgkin lymphoma

    Get PDF
    Key Points Combining phosphatidylinositol-3-kinase δ inhibition with rituximab, bendamustine, or both is feasible and active in relapsed iNHL. The safety of novel combinations should be proven in phase 3 trials before adoption in clinical practice.</jats:p

    The Yeast Complex I Equivalent NADH Dehydrogenase Rescues pink1 Mutants

    Get PDF
    Pink1 is a mitochondrial kinase involved in Parkinson's disease, and loss of Pink1 function affects mitochondrial morphology via a pathway involving Parkin and components of the mitochondrial remodeling machinery. Pink1 loss also affects the enzymatic activity of isolated Complex I of the electron transport chain (ETC); however, the primary defect in pink1 mutants is unclear. We tested the hypothesis that ETC deficiency is upstream of other pink1-associated phenotypes. We expressed Saccaromyces cerevisiae Ndi1p, an enzyme that bypasses ETC Complex I, or sea squirt Ciona intestinalis AOX, an enzyme that bypasses ETC Complex III and IV, in pink1 mutant Drosophila and find that expression of Ndi1p, but not of AOX, rescues pink1-associated defects. Likewise, loss of function of subunits that encode for Complex I–associated proteins displays many of the pink1-associated phenotypes, and these defects are rescued by Ndi1p expression. Conversely, expression of Ndi1p fails to rescue any of the parkin mutant phenotypes. Additionally, unlike pink1 mutants, fly parkin mutants do not show reduced enzymatic activity of Complex I, indicating that Ndi1p acts downstream or parallel to Pink1, but upstream or independent of Parkin. Furthermore, while increasing mitochondrial fission or decreasing mitochondrial fusion rescues mitochondrial morphological defects in pink1 mutants, these manipulations fail to significantly rescue the reduced enzymatic activity of Complex I, indicating that functional defects observed at the level of Complex I enzymatic activity in pink1 mutant mitochondria do not arise from morphological defects. Our data indicate a central role for Complex I dysfunction in pink1-associated defects, and our genetic analyses with heterologous ETC enzymes suggest that Ndi1p-dependent NADH dehydrogenase activity largely acts downstream of, or in parallel to, Pink1 but upstream of Parkin and mitochondrial remodeling

    Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials

    Get PDF
    Biological treatment using Methane Oxidizing Bacteria (MOB) immobilized on carrier materials is considered as the best solution to mitigate methane emission at low concentrations (e.g., in animal houses). The porosity of the support is one of the most important factors for an efficient removal of methane. In animal houses, building materials having a high porosity may provide a niche for MOB. In this study, we evaluated the methane removal capacity of MOB immobilized on porous building materials. Six different types of building materials and MOB were chosen for the experiments. Building materials were immersed in an MOB liquid culture (2.108 cells/ml) and after 24 hours the liquid were separated. The methane removal capacity of MOB was investigated by analyizing the evolution of the methane concentration in the headspace of a closed incubator containing the materials at starting concentrations of ~20 %(v/v) and ~50 ppmv. MOB immobilized on Maastricht limestone and Ytong exhibited higher methane removal rates compared to when immobilized in other materials with M. parvus NCIMB 11129T in Maastricht limestone (0.1 mg CH4 (m3air h)-1) exhibited the highest rate at ~50 ppmv and M. trichosporium NCIMB 11131T in Maastricht limestone (1451 mg CH4 (m3air h)-1) at ~20 %(v/v). Both materials exhibited the highest macropores (i.e., pore diameter > 3 ÎĽm) volume. Therefore, they were likely to accommodate more bacteria and consequently higher methane removal rate by the MOB. M. parvus and M. trichosporium were able to remove methane for two months with decreasing activity. From this study it was shown that methane can be efficiently removed from the air by MOB immobilized on building materials

    A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors

    Get PDF
    BACKGROUND: Patients with DLBCL who are ineligible for or have relapsed after aggressive salvage chemotherapy have a poor prognosis. CD40 is expressed on multiple B-cell neoplasms including DLBCL and is a potential target for immunotherapy. Dacetuzumab (SGN-40), a non-blocking, partial agonist, humanized IgG1, anti-CD40 monoclonal antibody, has previously demonstrated anti-lymphoma activity in a phase I study. METHODS: A phase II study was undertaken to evaluate the rate and duration of objective responses and safety of single-agent dacetuzumab in relapsed DLBCL. Forty-six adult patients with relapsed/refractory DLBCL received up to 12 cycles of intravenous dacetuzumab using intrapatient dose-escalation to a target dose of 8 mg/kg/week in an initial 5-week cycle, followed by 4-week cycles of 8 mg/kg/week. Study endpoints included rate and duration of objective responses, safety, survival, pharmacokinetics, immunogenicity, and exploratory correlative studies. RESULTS: Overall response rate was 9% and disease control rate (complete remission + partial remission + stable disease) was 37%. Common non-hematologic adverse events (AEs) included fatigue, headache, chills, fever, and nausea. The most frequent Grade 3–4 non-hematologic AE was deep venous thrombosis (3 patients). Grade 3–4 lymphopenia (41%), neutropenia (13%), or thrombocytopenia (19%) occurred without associated infection or bleeding. Reversible ocular events, including conjunctivitis and ocular hyperemia, occurred in 8 patients (17%). Patient-specific factors, including Fc-gamma-RIIIa polymorphism, did not appear to correlate with antitumor activity. CONCLUSIONS: Single-agent dacetuzumab has modest activity and manageable toxicity in unselected patients with relapsed DLBCL. Combination regimens and robust methods of patient selection may be necessary for further development. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT00435916

    Surgical management and pathological assessment of pancreatoduodenectomy with venous resection: an international survey among surgeons and pathologists

    Get PDF
    Background: The aim of this survey was to gain insights in the current surgical management and pathological assessment of pancreatoduodenectomy with portal–superior mesenteric vein resection (VR). Methods: A systematic literature search was performed to identify international expert surgeons (N = 150) and pathologists (N = 40) who published relevant studies between 2009 and 2019. These experts and Dutch surgeons (N = 17) and pathologists (N = 20) were approached to complete an online survey. Results: Overall, 76 (46%) surgeons and 37 (62%) pathologists completed the survey. Most surgeons (71%) estimated that preoperative imaging corresponded correctly with intraoperative findings of venous involvement in 50–75% of patients. An increased complication risk following VR was expected by 55% of surgeons, mainly after Type 4 (segmental resection-venous conduit anastomosis). Most surgeons (61%) preferred Type 3 (segmental resection-primary anastomosis). Most surgeons (75%) always perform the VR themselves. Standard postoperative imaging for patency control was performed by 54% of surgeons and 39% adjusted thromboprophylaxis following VR. Most pathologists (76%) always assessed tumor infiltration in the resected vein and only 54% of pathologists always assess the resection margins of the vein itself. Variation in assessment of tumor infiltration depth was observed. Conclusion: This international survey showed variation in the surgical management and pathological assessment of pancreatoduodenectomy with venous involvement. This highlights the lack of evidence and emphasizes the need for research on imaging modalities to improve patient selection for VR, surgical techniques, postoperative management and standardization of the pathological assessment
    • …
    corecore