6,460 research outputs found
Automatic Music Composition using Answer Set Programming
Music composition used to be a pen and paper activity. These these days music
is often composed with the aid of computer software, even to the point where
the computer compose parts of the score autonomously. The composition of most
styles of music is governed by rules. We show that by approaching the
automation, analysis and verification of composition as a knowledge
representation task and formalising these rules in a suitable logical language,
powerful and expressive intelligent composition tools can be easily built. This
application paper describes the use of answer set programming to construct an
automated system, named ANTON, that can compose melodic, harmonic and rhythmic
music, diagnose errors in human compositions and serve as a computer-aided
composition tool. The combination of harmonic, rhythmic and melodic composition
in a single framework makes ANTON unique in the growing area of algorithmic
composition. With near real-time composition, ANTON reaches the point where it
can not only be used as a component in an interactive composition tool but also
has the potential for live performances and concerts or automatically generated
background music in a variety of applications. With the use of a fully
declarative language and an "off-the-shelf" reasoning engine, ANTON provides
the human composer a tool which is significantly simpler, more compact and more
versatile than other existing systems. This paper has been accepted for
publication in Theory and Practice of Logic Programming (TPLP).Comment: 31 pages, 10 figures. Extended version of our ICLP2008 paper.
Formatted following TPLP guideline
Resistance to sap-sucking insects in modern-day agriculture
Plants and herbivores have co-evolved in their natural habitats for about 350 million years, but since the domestication of crops, plant resistance against insects has taken a different turn. With the onset of monoculture-driven modern agriculture, selective pressure on insects to overcome resistances has dramatically increased. Therefore plant breeders have resorted to high-tech tools to continuously create new insect-resistant crops. Efforts in the past 30 years have resulted in elucidation of mechanisms of many effective plant defenses against insect herbivores. Here, we critically appraise these efforts and – with a focus on sap-sucking insects – discuss how these findings have contributed to herbivore-resistant crops. Moreover, in this review we try to assess where future challenges and opportunities lay ahead. Of particular importance will be a mandatory reduction in systemic pesticide usage and thus a greater reliance on alternative methods, such as improved plant genetics for plant resistance to insect herbivores
The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier:impact via gut microbiota and direct effects on immune cells
Pectins are dietary fibers with different structural characteristics. Specific pectin structures can influence the gastrointestinal immune barrier by directly interacting with immune cells or by impacting the intestinal microbiota. The impact of pectin strongly depends on the specific structural characteristics of pectin; for example, the degree of methyl-esterification, acetylation and rhamnogalacturonan I or rhamnogalacturonan II neutral side chains. Here, we review the interactions of specific pectin structures with the gastrointestinal immune barrier. The effects of pectin include strengthening the mucus layer, enhancing epithelial integrity, and activating or inhibiting dendritic cell and macrophage responses. The direct interaction of pectins with the gastrointestinal immune barrier may be governed through pattern recognition receptors, such as Toll-like receptors 2 and 4 or Galectin-3. In addition, specific pectins can stimulate the diversity and abundance of beneficial microbial communities. Furthermore, the gastrointestinal immune barrier may be enhanced by short-chain fatty acids. Moreover, pectins can enhance the intestinal immune barrier by favoring the adhesion of commensal bacteria and inhibiting the adhesion of pathogens to epithelial cells. Current data illustrate that pectin may be a powerful dietary fiber to manage and prevent several inflammatory conditions, but additional human studies with pectin molecules with well-defined structures are urgently needed
Experimental phage therapy of burn wound infection : difficult first steps
Antibiotic resistance has become a major public health problem and the antibiotics pipeline is running dry. Bacteriophages (phages) may offer an ‘innovative’ means of infection treatment, which can be combined or alternated with antibiotic therapy and may enhance our abilities to treat bacterial infections successfully. Today, in the Queen Astrid Military Hospital, phage therapy is increasingly considered as part of a salvage therapy for patients in therapeutic dead end, particularly those with multidrug resistant infections. We describe the application of a well-defined and quality controlled phage cocktail, active against Pseudomonas aeruginosa and Staphylococcus aureus, on colonized burn wounds within a modest clinical trial (nine patients, 10 applications), which was approved by a leading Belgian Medical Ethical Committee. No adverse events, clinical abnormalities or changes in laboratory test results that could be related to the application of phages were observed. Unfortunately, this very prudent ‘clinical trial’ did not allow for an adequate evaluation of the efficacy of the phage cocktail. Nevertheless, this first ‘baby step’ revealed several pitfalls and lessons for future experimental phage therapy and helped overcome the psychological hurdles that existed to the use of viruses in the treatment of patients in our burn unit
The influence of calcium on pectin's impact on TLR2 signalling
High intake of dietary fibres and calcium has been correlated to a lower frequency of Western disease such as allergy, asthma and obesity. How the combined higher intake of dietary fibres and calcium reduces the incidence of these diseases is unknown. Dietary fibre pectin can interact with Toll-like receptor (TLR) 2 and calcium in a degree of methyl-esterification (DM)-dependent manner. Low DM pectins interact stronger with TLR2 than high DM pectins. Since low DM pectin are known to bind calcium strongly, we investigated how calcium influences the DM-dependent impact of pectins on TLR2 signalling. We tested TLR2 activating, inhibiting and binding properties of pectins with DM18, DM52 and DM69 under 0 mM, 1 mM and 10 mM calcium conditions. None of the pectins activated TLR2, but pectins inhibited TLR2. Under 0 mM calcium conditions, especially DM18 and DM52 strongly inhibited TLR2 and bound strongly to TLR2. Addition of 1 and 10 mM calcium to these pectins reduced TLR2 inhibition and TLR2 binding. Our study shows that calcium reduces inhibition of TLR2 by low and intermediate DM pectins, but calcium has lower impact on TLR2 inhibition by high DM pectins. Calcium may therefore beneficially influence the impact of pectin on TLR2 signalling and contribute to an improved intestinal barrier function. A combined higher intake of pectin and calcium may therefore contribute to a lower incidence of Western diseases.</p
Human milk oligosaccharides and non-digestible carbohydrates prevent adhesion of specific pathogens via modulating glycosylation or inflammatory genes in intestinal epithelial cells
Human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) are known to inhibit the adhesion of pathogens to the gut epithelium, but the mechanisms involved are not well understood. Here, the effects of 2 '-FL, 3-FL, DP3-DP10, DP10-DP60 and DP30-DP60 inulins and DM7, DM55 and DM69 pectins were studied on pathogen adhesion to Caco-2 cells. As the growth phase influences virulence, E. coli ET8, E. coli LMG5862, E. coli O119, E. coli WA321, and S. enterica subsp. enterica LMG07233 from both log and stationary phases were tested. Specificity for enteric pathogens was tested by including the lung pathogen K. pneumoniae LMG20218. Expression of the cell membrane glycosylation genes of galectin and glycocalyx and inflammatory genes was studied in the presence and absence of 2 '-FL or NDCs. Inhibition of pathogen adhesion was observed for 2 '-FL, inulins, and pectins. Pre-incubation with 2 '-FL downregulated ICAM1, and pectins modified the glycosylation genes. In contrast, K. pneumoniae LMG20218 downregulated the inflammatory genes, but these were restored by pre-incubation with pectins, which reduced the adhesion of K. pneumoniae LMG20218. In addition, DM69 pectin significantly upregulated the inflammatory genes. 2 '-FL and pectins but not inulins inhibited pathogen adhesion to the gut epithelial Caco-2 cells through changing the cell membrane glycosylation and inflammatory genes, but the effects were molecule-, pathogen-, and growth phase-dependent
Determinants of bacterial and fungal microbiota in Finnish home dust : Impact of environmental biodiversity, pets, and occupants
The indoors is where many humans spend most of their time, and are strongly exposed to indoor microbiota, which may have multifaceted effects on health. Therefore, a comprehensive understanding of the determinants of indoor microbiota is necessary. We collected dust samples from 295 homes of families with young children in the Helsinki region of Finland and analyzed the bacterial and fungal composition based on the 16S rRNA and ITS DNA sequences. Microbial profiles were combined with extensive survey data on family structure, daily life, and physical characteristics of the home, as well as additional external environmental information, such as land use, and vegetational biodiversity near the home. Using permutational multivariate analysis of variance we explained 18% of the variation of the relative abundance between samples within bacterial composition, and 17% of the fungal composition with the explanatory variables. The fungal community was dominated by the phyla Basidiomycota, and Ascomycota; the bacterial phyla Proteobacteria, Firmicutes, Cyanobacteria, and Actinobacteria were dominant. The presence of dogs, multiple children, and firewood were significantly associated with both the fungal and bacterial composition. Additionally, fungal communities were associated with land use, biodiversity in the area, and the type of building, while bacterial communities were associated with the human inhabitants and cleaning practices. A distinction emerged between members of Ascomycota and Basidiomycota, Ascomycota being more abundant in homes with greater surrounding natural environment, and potential contact with the environment. The results suggest that the fungal composition is strongly dependent on the transport of outdoor environmental fungi into homes, while bacteria are largely derived from the inhabitants.Peer reviewe
- …