2,225 research outputs found

    Dynamic System Adaptation by Constraint Orchestration

    Get PDF
    For Paradigm models, evolution is just-in-time specified coordination conducted by a special reusable component McPal. Evolution can be treated consistently and on-the-fly through Paradigm's constraint orchestration, also for originally unforeseen evolution. UML-like diagrams visually supplement such migration, as is illustrated for the case of a critical section solution evolving into a pipeline architecture.Comment: 19 page

    Combining Insertion and Deletion in RNA-editing Preserves Regularity

    Get PDF
    Inspired by RNA-editing as occurs in transcriptional processes in the living cell, we introduce an abstract notion of string adjustment, called guided rewriting. This formalism allows simultaneously inserting and deleting elements. We prove that guided rewriting preserves regularity: for every regular language its closure under guided rewriting is regular too. This contrasts an earlier abstraction of RNA-editing separating insertion and deletion for which it was proved that regularity is not preserved. The particular automaton construction here relies on an auxiliary notion of slice sequence which enables to sweep from left to right through a completed rewrite sequence.Comment: In Proceedings MeCBIC 2012, arXiv:1211.347

    Predictions for mass-loss rates and terminal wind velocities of massive O-type stars

    Full text link
    Mass loss forms an important aspect of the evolution of massive stars, as well as for the enrichment of the surrounding ISM. Our goal is to predict accurate mass-loss rates and terminal wind velocities. These quantities can be compared to empirical values, thereby testing radiation-driven wind models. One specific issue is that of the "weak-wind problem", where empirically derived mass-loss rates fall orders of magnitude short of predicted values. We employ an established Monte Carlo model and a recently suggested new line acceleration formalism to solve the wind dynamics consistently. We provide a new grid of mass-loss rates and terminal wind velocities of O stars, and compare the values to empirical results. Our models fail to provide mass-loss rates for main-sequence stars below a luminosity of log(L/Lsun) = 5.2, where we run into a fundamental limit. At luminosities below this critical value there is insufficient momentum transferred in the region below the sonic point to kick-start the acceleration. This problem occurs at the location of the onset of the weak-wind problem. For O dwarfs, the boundary between being able to start a wind, and failing to do so, is at spectral type O6/O6.5. The direct cause of this failure is a combination of the lower luminosity and a lack of Fe V lines at the wind base. This might indicate that another mechanism is required to provide the necessary driving to initiate the wind. For stars more luminous than log(L/Lsun) = 5.2, our new mass-loss rates are in excellent agreement with the mass-loss prescription by Vink et al. 2000. This implies that the main assumption entering the method of the Vink et al. prescriptions - i.e. that the momentum equation is not explicitly solved for - does not compromise the reliability of the Vink et al. results for this part of parameter space (Abridged).Comment: 10 pages, 10 figures, Astronomy & Astrophysics (in press

    Reconciling real and stochastic time: The need for probabilistic refinement

    Get PDF
    We conservatively extend anACP-style discrete-time process theorywith discrete stochastic delays. The semantics of the timed delays relies on time additivity and time determinism, which are properties that enable us to merge subsequent timed delays and to impose their synchronous expiration. Stochastic delays, however, interact with respect to a so-called race condition that determines the set of delays that expire first, which is guided by an (implicit) probabilistic choice. The race condition precludes the property of time additivity as the merger of stochastic delays alters this probabilistic behavior. To this end, we resolve the race condition using conditionally- distributed unit delays. We give a sound and ground-complete axiomatization of the process theory comprising the standard set of ACP-style operators. In this generalized setting, the alternative composition is no longer associative, so we have to resort to special normal forms that explicitly resolve the underlying race condition. Our treatment succeeds in the initial challenge to conservatively extend standard time with stochastic time. However, the 'dissection' of the stochastic delays to conditionally-distributed unit delays comes at a price, as we can no longer relate the resolved race condition to the original stochastic delays. We seek a solution in the field of probabilistic refinements that enable the interchange of probabilistic and non deterministic choices.Fil: Markovski, J.. Technische Universiteit Eindhoven; Países BajosFil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Baeten, J. C. M.. Technische Universiteit Eindhoven; Países Bajos. Centrum Wiskunde & Informatica; Países BajosFil: De Vink, E. P.. Technische Universiteit Eindhoven; Países Bajos. Centrum Wiskunde & Informatica; Países Bajo

    The evolution of rotating very massive stars with LMC composition

    Get PDF
    We present a dense model grid with tailored input chemical composition appropriate for the Large Magellanic Cloud. We use a one-dimensional hydrodynamic stellar evolution code, which accounts for rotation, transport of angular momentum by magnetic fields, and stellar wind mass loss to compute our detailed models. We calculate stellar evolution models with initial masses of 70-500 Msun and with initial surface rotational velocities of 0-550 km/s, covering the core-hydrogen burning phase of evolution. We find our rapid rotators to be strongly influenced by rotationally induced mixing of helium, with quasi-chemically homogeneous evolution occurring for the fastest rotating models. Above 160 Msun, homogeneous evolution is also established through mass loss, producing pure helium stars at core hydrogen exhaustion independent of the initial rotation rate. Surface nitrogen enrichment is also found for slower rotators, even for stars that lose only a small fraction of their initial mass. For models above 150 MZAMS, and for models in the whole considered mass range later on, we find a considerable envelope inflation due to the proximity of these models to their Eddington limit. This leads to a maximum zero-age main sequence surface temperature of 56000 K, at 180 Msun, and to an evolution of stars in the mass range 50-100 Msun to the regime of luminous blue variables in the HR diagram with high internal Eddington factors. Inflation also leads to decreasing surface temperatures during the chemically homogeneous evolution of stars above 180 Msun. The cool surface temperatures due to the envelope inflation in our models lead to an enhanced mass loss, which prevents stars at LMC metallicity from evolving into pair-instability supernovae. The corresponding spin-down will also prevent very massive LMC stars to produce long-duration gamma-ray bursts, which might, however, originate from lower masses.Comment: 21 pages, 25 figure

    The VLT-FLAMES Tarantula Survey XXI. Stellar spin rates of O-type spectroscopic binaries

    Full text link
    The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are however found in multiple systems. By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary sub-populations with one another as well as with that of presumed single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the massive stars spin rates. We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (\vrot) for components of 114 spectroscopic binaries in 30 Doradus. The \vrot\ values are derived from the full-width at half-maximum (FWHM) of a set of spectral lines, using a FWHM vs. \vrot\ calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. The overall \vrot\ distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at \vrot < 200 kms) and a shoulder at intermediate velocities (200 < \vrot < 300 kms). The distributions of binaries and single stars however differ in two ways. First, the main peak at \vrot \sim100 kms is broader and slightly shifted toward higher spin rates in the binary distribution compared to that of the presumed-single stars. Second, the \vrot distribution of primaries lacks a significant population of stars spinning faster than 300 kms while such a population is clearly present in the single star sample.Comment: 16 pages, 16 figures, paper accepted in Astronomy & Astrophysic

    From Capillary Condensation to Interface Localization Transitions in Colloid Polymer Mixtures Confined in Thin Film Geometry

    Full text link
    Monte Carlo simulations of the Asakura-Oosawa (AO) model for colloid-polymer mixtures confined between two parallel repulsive structureless walls are presented and analyzed in the light of current theories on capillary condensation and interface localization transitions. Choosing a polymer to colloid size ratio of q=0.8 and studying ultrathin films in the range of D=3 to D=10 colloid diameters thickness, grand canonical Monte Carlo methods are used; phase transitions are analyzed via finite size scaling, as in previous work on bulk systems and under confinement between identical types of walls. Unlike the latter work, inequivalent walls are used here: while the left wall has a hard-core repulsion for both polymers and colloids, at the right wall an additional square-well repulsion of variable strength acting only on the colloids is present. We study how the phase separation into colloid-rich and colloid-poor phases occurring already in the bulk is modified by such a confinement. When the asymmetry of the wall-colloid interaction increases, the character of the transition smoothly changes from capillary condensation-type to interface localization-type. The critical behavior of these transitions is discussed, as well as the colloid and polymer density profiles across the film in the various phases, and the correlation of interfacial fluctuations in the direction parallel to the confining walls. The experimental observability of these phenomena also is briefly discussed.Comment: 36 pages, 15 figure

    Injective Synchronisation: an extension of the authentication hierarchy

    Get PDF
    Authentication is one of the foremost goals of many security protocols. It is most often formalised as a form of agreement, which expresses that the communicating partners agree on the values of a number of variables. In this paper we formalise and study an intensional form of authentication which we call synchronisation. Synchronisation expresses that the messages are transmitted exactly as prescribed by the protocol description. Synchronisation is a strictly stronger property than agreement for the standard intruder model, because it can be used to detect preplay attacks. In order to prevent replay attacks on simple protocols, we also define injective synchronisation. Given a synchronising protocol, we show that a sufficient syntactic criterion exists that guarantees that the protocol is injective as well

    The VLT-FLAMES Tarantula Survey X: Evidence for a bimodal distribution of rotational velocities for the single early B-type stars

    Full text link
    Aims: Projected rotational velocities (\vsini) have been estimated for 334 targets in the VLT-FLAMES Tarantula survey that do not manifest significant radial velocity variations and are not supergiants. They have spectral types from approximately O9.5 to B3. The estimates have been analysed to infer the underlying rotational velocity distribution, which is critical for understanding the evolution of massive stars. Methods: Projected rotational velocities were deduced from the Fourier transforms of spectral lines, with upper limits also being obtained from profile fitting. For the narrower lined stars, metal and non-diffuse helium lines were adopted, and for the broader lined stars, both non-diffuse and diffuse helium lines; the estimates obtained using the different sets of lines are in good agreement. The uncertainty in the mean estimates is typically 4% for most targets. The iterative deconvolution procedure of Lucy has been used to deduce the probability density distribution of the rotational velocities. Results: Projected rotational velocities range up to approximately 450 \kms and show a bi-modal structure. This is also present in the inferred rotational velocity distribution with 25% of the sample having 00\leq\ve\leq100\,\kms and the high velocity component having \ve250\sim 250\,\kms. There is no evidence from the spatial and radial velocity distributions of the two components that they represent either field and cluster populations or different episodes of star formation. Be-type stars have also been identified. Conclusions: The bi-modal rotational velocity distribution in our sample resembles that found for late-B and early-A type stars. While magnetic braking appears to be a possible mechanism for producing the low-velocity component, we can not rule out alternative explanations.Comment: to be publisged in A&

    Multiple verification in computational modeling of bone pathologies

    Full text link
    We introduce a model checking approach to diagnose the emerging of bone pathologies. The implementation of a new model of bone remodeling in PRISM has led to an interesting characterization of osteoporosis as a defective bone remodeling dynamics with respect to other bone pathologies. Our approach allows to derive three types of model checking-based diagnostic estimators. The first diagnostic measure focuses on the level of bone mineral density, which is currently used in medical practice. In addition, we have introduced a novel diagnostic estimator which uses the full patient clinical record, here simulated using the modeling framework. This estimator detects rapid (months) negative changes in bone mineral density. Independently of the actual bone mineral density, when the decrease occurs rapidly it is important to alarm the patient and monitor him/her more closely to detect insurgence of other bone co-morbidities. A third estimator takes into account the variance of the bone density, which could address the investigation of metabolic syndromes, diabetes and cancer. Our implementation could make use of different logical combinations of these statistical estimators and could incorporate other biomarkers for other systemic co-morbidities (for example diabetes and thalassemia). We are delighted to report that the combination of stochastic modeling with formal methods motivate new diagnostic framework for complex pathologies. In particular our approach takes into consideration important properties of biosystems such as multiscale and self-adaptiveness. The multi-diagnosis could be further expanded, inching towards the complexity of human diseases. Finally, we briefly introduce self-adaptiveness in formal methods which is a key property in the regulative mechanisms of biological systems and well known in other mathematical and engineering areas.Comment: In Proceedings CompMod 2011, arXiv:1109.104
    corecore