705 research outputs found

    Transcriptional regulators of arteriovenous identity in the developing mammalian embryo

    Get PDF
    The complex and hierarchical vascular network of arteries, veins, and capillaries features considerable endothelial heterogeneity, yet the regulatory pathways directing arteriovenous specification, differentiation, and identity are still not fully understood. Recent advances in analysis of endothelial-specific gene-regulatory elements, single-cell RNA sequencing, and cell lineage tracing have both emphasized the importance of transcriptional regulation in this process and shed considerable light on the mechanism and regulation of specification within the endothelium. In this review, we discuss recent advances in our understanding of how endothelial cells acquire arterial and venous identity and the role different transcription factors play in this process

    Management of patient adherence to medications: protocol for an online survey of doctors, pharmacists and nurses in Europe

    Get PDF
    Introduction It is widely recognised that many patients do not take prescribed medicines as advised. Research in this field has commonly focused on the role of the patient in non-adherence; however, healthcare professionals can also have a major influence on patient behaviour in taking medicines. This study examines the perceptions, beliefs and behaviours of healthcare professionals-doctors, pharmacists and nurses-about patient medication adherence. Methods and analysis This paper describes the study protocol and online questionnaire used in a cross-sectional survey of healthcare professionals in Europe. The participating countries include Austria, Belgium, France, Greece, The Netherlands, Germany, Poland, Portugal, Switzerland, Hungary, Italy and England. The study population comprises primary care and community-based doctors, pharmacists and nurses involved in the care of adult patients taking prescribed medicines for chronic and acute illnesses. Discussion Knowledge of the nature, extent and variability of the practices of healthcare professionals to support medication adherence could inform future service design, healthcare professional education, policy and research

    A multi-antigenic adenoviral-vectored vaccine improves BCG-induced protection of goats against pulmonary tuberculosis infection and prevents disease progression

    Get PDF
    The “One world, one health” initiative emphasizes the need for new strategies to control human and animal tuberculosis (TB) based on their shared interface. A good example would be the development of novel universal vaccines against Mycobacterium tuberculosis complex (MTBC) infection. This study uses the goat model, a natural TB host, to assess the protective effectiveness of a new vaccine candidate in combination with Bacillus Calmette-Guerin (BCG) vaccine. Thirty-three goat kids were divided in three groups: Group 1) vaccinated with BCG (week 0), Group 2) vaccinated with BCG and boosted 8 weeks later with a recombinant adenovirus expressing the MTBC antigens Ag85A, TB10.4, TB9.8 and Acr2 (AdTBF), and Group 3) unvaccinated controls. Later on, an endobronchial challenge with a low dose of M. caprae was performed (week 15). After necropsy (week 28), the pulmonary gross pathology was quantified using high resolution Computed Tomography. Small granulomatous pulmonary lesions (< 0.5 cm diameter) were also evaluated through a comprehensive qualitative histopathological analysis. M. caprae CFU were counted from pulmonary lymph nodes. The AdTBF improved the effects of BCG reducing gross lesion volume and bacterial load, as well as increasing weight gain. The number of Ag85A-specific gamma interferon-producing memory T-cells was identified as a predictor of vaccine efficacy. Specific cellular and humoral responses were measured throughout the 13-week post-challenge period, and correlated with the severity of lesions. Unvaccinated goats exhibited the typical pathological features of active TB in humans and domestic ruminants, while vaccinated goats showed only very small lesions. The data presented in this study indicate that multi-antigenic adenoviral vectored vaccines boosts protection conferred by vaccination with BCG

    Uncovering the complex genetics of human temperament

    Get PDF
    Experimental studies of learning suggest that human temperament may depend on the molecular mechanisms for associative conditioning, which are highly conserved in animals. The main genetic pathways for associative conditioning are known in experimental animals, but have not been identified in prior genome-wide association studies (GWAS) of human temperament. We used a data-driven machine learning method for GWAS to uncover the complex genotypic–phenotypic networks and environmental interactions related to human temperament. In a discovery sample of 2149 healthy Finns, we identified sets of single-nucleotide polymorphisms (SNPs) that cluster within particular individuals (i.e., SNP sets) regardless of phenotype. Second, we identified 3 clusters of people with distinct temperament profiles measured by the Temperament and Character Inventory regardless of genotype. Third, we found 51 SNP sets that identified 736 gene loci and were significantly associated with temperament. The identified genes were enriched in pathways activated by associative conditioning in animals, including the ERK, PI3K, and PKC pathways. 74% of the identified genes were unique to a specific temperament profile. Environmental influences measured in childhood and adulthood had small but significant effects. We confirmed the replicability of the 51 Finnish SNP sets in healthy Korean (90%) and German samples (89%), as well as their associations with temperament. The identified SNPs explained nearly all the heritability expected in each sample (37–53%) despite variable cultures and environments. We conclude that human temperament is strongly influenced by more than 700 genes that modulate associative conditioning by molecular processes for synaptic plasticity and long-term memory

    Uncovering the complex genetics of human character

    Get PDF
    Human personality is 30–60% heritable according to twin and adoption studies. Hundreds of genetic variants are expected to influence its complex development, but few have been identified. We used a machine learning method for genome-wide association studies (GWAS) to uncover complex genotypic–phenotypic networks and environmental interactions. The Temperament and Character Inventory (TCI) measured the self-regulatory components of personality critical for health (i.e., the character traits of self-directedness, cooperativeness, and self-transcendence). In a discovery sample of 2149 healthy Finns, we identified sets of single-nucleotide polymorphisms (SNPs) that cluster within particular individuals (i.e., SNP sets) regardless of phenotype. Second, we identified five clusters of people with distinct profiles of character traits regardless of genotype. Third, we found 42 SNP sets that identified 727 gene loci and were significantly associated with one or more of the character profiles. Each character profile was related to different SNP sets with distinct molecular processes and neuronal functions. Environmental influences measured in childhood and adulthood had small but significant effects. We confirmed the replicability of 95% of the 42 SNP sets in healthy Korean and German samples, as well as their associations with character. The identified SNPs explained nearly all the heritability expected for character in each sample (50 to 58%). We conclude that self-regulatory personality traits are strongly influenced by organized interactions among more than 700 genes despite variable cultures and environments. These gene sets modulate specific molecular processes in brain for intentional goal-setting, self-reflection, empathy, and episodic learning and memor

    Improving inpatient postnatal services: midwives views and perspectives of engagement in a quality improvement initiative

    Get PDF
    Background: despite major policy initiatives in the United Kingdom to enhance women's experiences of maternity care, improving in-patient postnatal care remains a low priority, although it is an aspect of care consistently rated as poor by women. As part of a systems and process approach to improving care at one maternity unit in the South of England, the views and perspectives of midwives responsible for implementing change were sought. Methods: a Continuous Quality Improvement (CQI) approach was adopted to support a systems and process change to in-patient care and care on transfer home in a large district general hospital with around 6000 births a year. The CQI approach included an initial assessment to identify where revisions to routine systems and processes were required, developing, implementing and evaluating revisions to the content and documentation of care in hospital and on transfer home, and training workshops for midwives and other maternity staff responsible for implementing changes. To assess midwifery views of the quality improvement process and their engagement with this, questionnaires were sent to those who had participated at the outset. Results: questionnaires were received from 68 (46%) of the estimated 149 midwives eligible to complete the questionnaire. All midwives were aware of the revisions introduced, and two-thirds felt these were more appropriate to meet the women's physical and emotional health, information and support needs. Some midwives considered that the introduction of new maternal postnatal records increased their workload, mainly as a consequence of colleagues not completing documentation as required. Conclusions: this was the first UK study to undertake a review of in-patient postnatal services. Involvement of midwives at the outset was essential to the success of the initiative. Midwives play a lead role in the planning and organisation of in-patient postnatal care and it was important to obtain their feedback on whether revisions were pragmatic and achieved anticipated improvements in care quality. Their initial involvement ensured priority areas for change were identified and implemented. Their subsequent feedback highlighted further important areas to address as part of CQI to ensure best quality care continues to be implemented. Our findings could support other maternity service organisations to optimise in-patient postnatal services

    ICES Viewpoint background document: Impact from exhaust gas cleaning systems (scrubbers) on the marine environment (Ad hoc).

    Get PDF
    Shipping is a diverse industry that connects the world. The distribution and intensity of commercial shipping is increasing and there is a growing need to assess and mitigate the impacts of vessel activities on the marine environment. New global standards on sulphur content in marine fuels have led to an increasing number of ships installing exhaust gas cleaning systems (EGCS), also known as scrubbers, to reduce their emissions of sulphur oxides to the atmosphere. Ships equipped with a scrubber can continue to use heavy fuel oil, and the process results in discharges of large volumes of acidified water that contain a mix of contaminants, such as heavy metals, polycyclic aromatic hydrocarbons (PAHs), oil residues, and nitrates. For the most common type of scrubber, open loop, this polluted water is directly discharged back to the sea, trading reductions in air pollution for increased water pollution. The scrubber discharge mixture has demonstrated toxic effects in laboratory studies, causing immediate mortality in plankton and exhibiting negative synergistic effects. The substances found in scrubber discharge water are likely to have further impacts in the marine environment through bioaccumulation, acidification and eutrophication. The impacts of scrubber discharge water can be completely avoided through the use of alternative fuels, such as distilled low sulphur fuels. Distilled fuels have the added benefit that they remove the threat of heavy fuel oil spills from shipping activities. If the use of alternative fuels is not adopted, and scrubbers continue to be considered an equivalent method to meet the sulphur emissions limits, then there is urgent need for:1) significant investment in technological advances and port reception facilities to allow zero discharge closed loop scrubber systems;2) improved protocols and standards for measuring, monitoring and reporting on scrubber discharge water acidity and pollutants;3) evidence-based regulations on scrubber water discharge limits that consider the full suite of contaminants

    Corrigendum: MEF2 transcription factors are key regulators of sprouting angiogenesis

    Get PDF
    The above-mentioned article contained three errors in the Supplemental Figures. In Supplemental Figure 3D, both bar graphs are missing labels for the X-axes due to an oversight during figure preparation

    Diagnosing idiopathic learning disability: a cost-effectiveness analysis of microarray technology in the National Health Service of the United Kingdom

    Get PDF
    Array based comparative genomic hybridisation (aCGH) is a powerful technique for detecting clinically relevant genome imbalance and can offer 40 to > 1000 times the resolution of karyotyping. Indeed, idiopathic learning disability (ILD) studies suggest that a genome-wide aCGH approach makes 10–15% more diagnoses involving genome imbalance than karyotyping. Despite this, aCGH has yet to be implemented as a routine NHS service. One significant obstacle is the perception that the technology is prohibitively expensive for most standard NHS clinical cytogenetics laboratories. To address this, we investigated the cost-effectiveness of aCGH versus standard cytogenetic analysis for diagnosing idiopathic learning disability (ILD) in the NHS. Cost data from four participating genetics centres were collected and analysed. In a single test comparison, the average cost of aCGH was £442 and the average cost of karyotyping was £117 with array costs contributing most to the cost difference. This difference was not a key barrier when the context of follow up diagnostic tests was considered. Indeed, in a hypothetical cohort of 100 ILD children, aCGH was found to cost less per diagnosis (£3,118) than a karyotyping and multi-telomere FISH approach (£4,957). We conclude that testing for genomic imbalances in ILD using microarray technology is likely to be cost-effective because long-term savings can be made regardless of a positive (diagnosis) or negative result. Earlier diagnoses save costs of additional diagnostic tests. Negative results are cost-effective in minimising follow-up test choice. The use of aCGH in routine clinical practice warrants serious consideration by healthcare providers
    corecore