29 research outputs found

    Overexpression of Protein Kinase C Confers Protection Against Antileukemic Drugs by Inhibiting the Redox-Dependent Sphingomyelinase Activation

    Get PDF
    ABSTRACT Induction of apoptosis by chemotherapeutic drugs involves the sphingomyelin-ceramide (SM-CER) pathway. This signaling is critically dependent on reactive oxygen species (ROS) generation and p53/p56 Lyn activation. In this study, we have investigated the influence of protein kinase C (PKC) overexpression on the SM-CER pathway in U937 human leukemia cell line. We show that PKC overexpression resulted in delayed apoptosis and significant resistance to both 1-␀-D-arabinofuranosylcytosine (ara-C) and daunorubicin (DNR), but there was no significant protection against cell-permeant C 6 -CER. Moreover, PKC overexpression abrogated drug-induced neutral sphingomyelinase stimulation and CER generation by inhibiting ROS production. We further investigated p53/p56 Lyn activation in PKC-overexpressing U937 cells treated with ara-C or DNR. We demonstrate that PKC inhibited p53/p56 Lyn phosphorylation and stimulation in drug-or H 2 O 2 -treated cells, suggesting that p53/p56 Lyn redox regulation is altered in PKC-overexpressing cells. Finally, we show that PKC-overexpressing U937 cells displayed accelerated H 2 O 2 detoxification. Altogether, our study provides evidence for the role of PKC in the negative regulation of drug-induced SM-CER pathway

    Stress biology:Complexity and multifariousness in health and disease

    Get PDF
    Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.</p

    CBP-HSF2 structural and functional interplay in Rubinstein-Taybi neurodevelopmental disorder

    Get PDF
    Rubinstein-Taybi syndrome (RSTS) is a neurodevelopmental disorder with unclear underlying mechanisms. Here, the authors unravel the contribution of a stress-responsive pathway to RSTS where impaired HSF2 acetylation, due to RSTS-associated CBP/EP300 mutations, alters the expression of neurodevelopmental players, in keeping with hallmarks of cell-cell adhesion defects.Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.</p

    Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    Get PDF
    International audienceHeat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of "non-classical" targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of "non-classical" HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents

    Transcriptional regulation of small HSP—HSF1 and beyond

    No full text
    International audienceThe members of the small heat shock protein (sHSP) family are molecular chaperones that play major roles in development, stress responses, and diseases, and have been envisioned as targets for therapy, particularly in cancer. The molecular mechanisms that regulate their transcription, in normal, stress, or pathological conditions, are characterized by extreme complexity and subtlety. Although historically linked to the heat shock transcription factors (HSFs), the stress-induced or developmental expression of the diverse members, including HSPB1/Hsp27/Hsp25, αA-crystallin/HSPB4, and αB-crystallin/HSPB5, relies on the combinatory effects of many transcription factors. Coupled with remarkably different cis-element architectures in the sHsp regulatory regions, they confer to each member its developmental expression or stress-inducibility. For example, multiple regulatory pathways coordinate the spatio-temporal expression of mouse αA-, αB-crystallin, and Hsp25 genes during lens development, through the action of master genes, like the large Maf family proteins and Pax6, but also HSF4. The inducibility of Hsp27 and αB-crystallin transcription by various stresses is exerted by HSF-dependent mechanisms, by which concomitant induction of Hsp27 and αB-crystallin expression is observed. In contrast, HSF-independent pathways can lead to αB-crystallin expression, but not to Hsp27 induction. Not surprisingly, deregulation of the expression of sHSP is associated with various pathologies, including cancer, neurodegenerative, or cardiac diseases. However, many questions remain to be addressed, and further elucidation of the developmental mechanisms of sHsp gene transcription might help to unravel the tissue- and stage-specific functions of this fascinating class of proteins, which might prove to be crucial for future therapeutic strategies. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology

    HSP90 and HSP70: Implication in Inflammation Processes and Therapeutic Approaches for Myeloproliferative Neoplasms

    No full text
    Myeloproliferative neoplasms (MPN) are clonal stem cell disorders that lead to the excessive production of one or more blood cell lineages. It has been reported that, in most MPN, inflammatory cytokines are frequently increased, indicating that inflammation plays a crucial role in these disorders. Heat shock proteins (HSP) are induced in response to many stressful conditions from heat shock to hypoxia and inflammation. Besides their chaperone and cytoprotective functions, HSPs are key players during inflammation, hence the term “chaperokine.” Through their chaperone activity, HSP90, a stabilizer of many oncogenes (e.g., JAK2), and HSP70, a powerful antiapoptotic chaperone, tightly regulate Nuclear Factor-kappa B signalling, a critical pathway in mediating inflammatory responses. In light of this potential, several HSP90 inhibitors have been generated as anticancer agents able to degrade oncogenes. As it turns out, however, these drugs are also potent inhibitors of the inflammatory response in various diseases. Given the chaperone potential of HSP70 and the fact that HSP90 inhibitors induce HSP70, interest in HSP70 inhibitors is also increasing. Here, we focus on the implication of HSP90 and HSP70 in inflammatory responses and on the emergence of new therapeutic approaches in MPN based on HSP inhibitors

    Réponse des cellules leucémiques immatures au ligand de Fas

    No full text
    TOULOUSE3-BU Santé-Centrale (315552105) / SudocSudocFranceF
    corecore