2,136 research outputs found

    Finding bichromatic-bidirectional waves with ADVS

    Get PDF
    The aim of this study is to investigate Bichromatic-Bidirectional waves to characterize the subtractive wave-wave nonlinear interactions, using adaptive techniques rather than traditional spectral techniques. A physical model test in a 3D-wave basin was conducted and measurements were made with two arrays of ultrasonic sensors of free surface and one array of ADVs. The Hilbert-Huang transform, aided by the Multivariate Empirical Mode Decomposition, was applied to the orbital velocity data and the main characteristics of the infragravity wave (velocity amplitude, period and direction) were extracted with a good precision. © 2018 American Society of Civil Engineers (ASCE). All rights reserved

    Propriedades de ZrO2 (Y2 O3) reciclado proveniente da confecção de próteses dentárias

    Get PDF
    RESUMO O objetivo deste trabalho foi a recuperação de descartes de ZrO2(Y2O3) oriundos de laboratórios de próteses dentárias, a partir do seu reprocessamento. Os descartes de ZrO2(Y2O3) foram fragmentados, peneirados e calcinados a 900ºC. Pós com tamanho menor que 32μm foram prensados uniaxialmente a 100MPa e sinterizados em temperaturas entre 1400 e 1600ºC-120min. Análise de difração de raios X realizadas nos materiais calcinados indicaram a presença majoritária da fase ZrO2 tetragonal. Os compactos apresentaram densidade a verde próximo a 47% e as amostras sinterizadas tiveram sua densidade relativa variando entre 83,5% e 95%, para temperaturas de sinterização de 1400 e 1600ºC, respectivamente. Os resultados da análise de difração de raios X indicaram a presença da fase ZrO2 tetragonal, com dureza Vickers e tenacidade máxima obtidos para as amostras sinterizadas a 1600ºC, da ordem de 1100 HV e 5,7 MPa.m1/2 respectivamente

    Cooperation between Apoptotic and Viable Metacyclics Enhances the Pathogenesis of Leishmaniasis

    Get PDF
    Mimicking mammalian apoptotic cells by exposing phosphatidylserine (PS) is a strategy used by virus and parasitic protozoa to escape host protective inflammatory responses. With Leishmania amazonensis (La), apoptotic mimicry is a prerogative of the intramacrophagic amastigote form of the parasite and is modulated by the host. Now we show that differently from what happens with amastigotes, promastigotes exposing PS are non-viable, non-infective cells, undergoing apoptotic death. As part of the normal metacyclogenic process occurring in axenic cultures and in the gut of sand fly vectors, a sub-population of metacyclic promastigotes exposes PS. Apoptotic death of the purified PS-positive (PSPOS) sub-population was confirmed by TUNEL staining and DNA laddering. Transmission electron microscopy revealed morphological alterations in PSPOS metacyclics such as DNA condensation, cytoplasm degradation and mitochondrion and kinetoplast destruction, both in in vitro cultures and in sand fly guts. TUNELPOS promastigotes were detected only in the anterior midgut to foregut boundary of infected sand flies. Interestingly, caspase inhibitors modulated parasite death and PS exposure, when added to parasite cultures in a specific time window. Efficient in vitro macrophage infections and in vivo lesions only occur when PSPOS and PS-negative (PSNEG) parasites were simultaneously added to the cell culture or inoculated in the mammalian host. The viable PSNEG promastigote was the infective form, as shown by following the fate of fluorescently labeled parasites, while the PSPOS apoptotic sub-population inhibited host macrophage inflammatory response. PS exposure and macrophage inhibition by a subpopulation of promastigotes is a different mechanism than the one previously described with amastigotes, where the entire population exposes PS. Both mechanisms co-exist and play a role in the transmission and development of the disease in case of infection by La. Since both processes confer selective advantages to the infective microorganism they justify the occurrence of apoptotic features in a unicellular pathogen

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses

    Get PDF
    The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme—GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species
    corecore