2,797 research outputs found

    Dynamics of early establishment of SARS-CoV-2 VOC Omicron lineages in Minas Gerais, Brazil

    Get PDF
    Brazil is one of the nations most affected by Coronavirus disease 2019 (COVID-19). The introduction and establishment of new virus variants can be related to an increase in cases and fatalities. The emergence of Omicron, the most modified SARS-CoV-2 variant, caused alarm for the public health of Brazil. In this study, we examined the effects of the Omicron introduction in Minas Gerais (MG), the second-most populous state of Brazil. A total of 430 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) samples from November 2021 to June 2022 from Belo Horizonte (BH) city were sequenced. These newly sequenced genomes comprise 72% of all previously available SARS-CoV-2 genomes for the city. Evolutionary analysis of novel viral genomes reveals that a great diversity of Omicron sublineages have circulated in BH, a pattern in-keeping with observations across Brazil more generally. Bayesian phylogeographic reconstructions indicate that this diversity is a product of a large number of international and national importations. As observed previously, São Paulo state is shown as a significant hub for viral spread throughout the country, contributing to around 70% of all viral Omicron introductions detected in MG

    Systematic detection of putative tumor suppressor genes through the combined use of exome and transcriptome sequencing

    Get PDF
    Abstract Background To identify potential tumor suppressor genes, genome-wide data from exome and transcriptome sequencing were combined to search for genes with loss of heterozygosity and allele-specific expression. The analysis was conducted on the breast cancer cell line HCC1954, and a lymphoblast cell line from the same individual, HCC1954BL. Results By comparing exome sequences from the two cell lines, we identified loss of heterozygosity events at 403 genes in HCC1954 and at one gene in HCC1954BL. The combination of exome and transcriptome sequence data also revealed 86 and 50 genes with allele specific expression events in HCC1954 and HCC1954BL, which comprise 5.4% and 2.6% of genes surveyed, respectively. Many of these genes identified by loss of heterozygosity and allele-specific expression are known or putative tumor suppressor genes, such as BRCA1, MSH3 and SETX, which participate in DNA repair pathways. Conclusions Our results demonstrate that the combined application of high throughput sequencing to exome and allele-specific transcriptome analysis can reveal genes with known tumor suppressor characteristics, and a shortlist of novel candidates for the study of tumor suppressor activities

    Rapid viral metagenomics using SMART-9N amplification and nanopore sequencing [version 2; peer review: 2 approved]

    Get PDF
    Emerging and re-emerging viruses are a global health concern. Genome sequencing as an approach for monitoring circulating viruses is currently hampered by complex and expensive methods. Untargeted, metagenomic nanopore sequencing can provide genomic information to identify pathogens, prepare for or even prevent outbreaks. SMART (Switching Mechanism at the 5' end of RNA Template) is a popular approach for RNA-Seq but most current methods rely on oligo-dT priming to target polyadenylated mRNA molecules. We have developed two random primed SMART-Seq approaches, a sequencing agnostic approach 'SMART-9N' and a version compatible rapid adapters  available from Oxford Nanopore Technologies 'Rapid SMART-9N'. The methods were developed using viral isolates, clinical samples, and compared to a gold-standard amplicon-based method. From a Zika virus isolate the SMART-9N approach recovered 10kb of the 10.8kb RNA genome in a single nanopore read. We also obtained full genome coverage at a high depth coverage using the Rapid SMART-9N, which takes only 10 minutes and costs up to 45% less than other methods. We found the limits of detection of these methods to be 6 focus forming units (FFU)/mL with 99.02% and 87.58% genome coverage for SMART-9N and Rapid SMART-9N respectively. Yellow fever virus plasma samples and SARS-CoV-2 nasopharyngeal samples previously confirmed by RT-qPCR with a broad range of Ct-values were selected for validation. Both methods produced greater genome coverage when compared to the multiplex PCR approach and we obtained the longest single read of this study (18.5 kb) with a SARS-CoV-2 clinical sample, 60% of the virus genome using the Rapid SMART-9N method. This work demonstrates that SMART-9N and Rapid SMART-9N are sensitive, low input, and long-read compatible alternatives for RNA virus detection and genome sequencing and Rapid SMART-9N improves the cost, time, and complexity of laboratory work
    corecore