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Reliability of ground reaction forces in the aquatic environment  1 

 2 

1. Introduction 3 

 4 

 Bipedal gait is a skilled and complex activity that requires coordinated 5 

and controlled movements of the limbs, which act alternately from one support 6 

position to another. Gait can be studied and evaluated in various ways, one of 7 

which is through the use of force plates (FPs) that measure the direction and 8 

magnitude of the ground reaction forces (GRFs) (Duarte and Freitas, 2010). 9 

GRFs are of equal magnitude and the opposite direction to the force the body 10 

exerts on the ground through the foot, and must be overcome during forward 11 

movement (Sutherland, 2005).  12 

Aquatic exercises are widely used in the treatment of patients with many 13 

different medical conditions; these exercises maximize the properties of water 14 

related to fluid mechanics, such as viscosity, drag force, turbulent flow and 15 

buoyancy to achieve best outcomes for patients. Water is an ideal environment 16 

for exercise due to the decreased weight bearing through the lower limbs, 17 

offering less impact throughout the stance phase of the gait, but exercise in 18 

water also requires greater propulsive force to overcome the force of water 19 

(Harrison and Bulstrode, 1987; Nakazawa et al., 1994 and Barela et al., 20 

2006).The magnitude of the gait GRFs although lower than on land, can still be 21 

excessive, depending on the individual patient and their condition or medical 22 

problem. Knowing the GRFs related to different underwater activities during 23 

rehabilitation would help in exercise prescription and the evaluation of patients 24 

in this environment (Haupenthal et al., 2010c). 25 
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In 1992, Harrison et al. investigated GRFs in the aquatic environment. 26 

The authors designed a waterproof FP using a silicon rubber compound to 27 

measure weight-bearing during underwater gait at two heights of water 28 

submersion (1.1 and 1.3 m) and patients walked at two different speeds (slow 29 

and fast). The authors found that the percentage of weight bearing decreases 30 

inversely proportional to the speed. Since this seminal work, several other 31 

studies have explored GRFs in water during different activities such as running, 32 

jumping, backward walking and stationary running, factors such as depth of 33 

immersion and gait velocity have also been considered (Haupenthal et al., 34 

2010a; Haupenthal et al., 2010b; Orselli and Duarte, 2011; Fontana et al., 2011; 35 

Donoghue et al., 2011; Carneiro et al., 2012; Fontana et al., 2012 and 36 

Haupenthal et al., 2013).  37 

The use of reliable methods to determine the outcome of clinical 38 

interventions is essential as outcomes (or lack of outcomes) can have serious 39 

implications for patients. Visual and observational assessment methods are 40 

subjective and may not accurately reflect the results of treatment intervention.  41 

Thus, reliability studies are needed to evaluate the error in any outcome 42 

measure and test-retest studies are required to determine how well any 43 

measure performs at different times (Rankin and Stokes, 1998). Such studies 44 

may provide data about consistency as well demonstrating the safe use of the 45 

outcome measure not only in clinical practice but also in biomechanics research 46 

(Portney and Watkins, 2000 and Lexell and Downham, 2005).   47 

Several studies have evaluated the reliability of the FP during gait on 48 

land in different conditions and with different populations (Kadaba et al., 1989; 49 

Hamill and McNiven, 1990; White et al., 1999; Fortin et al., 2008 and Veilleux et 50 



3 
 

al., 2012).  However, to date there are no studies assessing the reliability of the 51 

FP in underwater walking. This is a major gap in the literature considering the 52 

extent to which aquatic exercises are used in rehabilitation and the need for a 53 

reliable outcome measure. The immersed body is affected by the action of fluid 54 

mechanics, which of course influences gait, thus establishing the reliability of 55 

kinetic parameters of underwater gait is necessary. The aim of this study 56 

therefore was to investigate the test-retest reliability of the kinetic gait 57 

parameters, as measured by a FP, in healthy individuals in water.  58 

 59 

2. Method 60 

 61 

2.1 Participants 62 

 63 

Forty-nine healthy young volunteers participated in this study, 31 females 64 

and 18 males, with a median (Md (25-75%)) age of 21 years (20-22), mass of 65 

57.5 kg (53-68), weight in the water of 147 N (98-225.5) and height of 1.65 m 66 

(1.60-1.72). The volunteers were considered eligible if they were between 18 67 

and 24 years and had no current lower extremity musculoskeletal pain and/or 68 

injury or any disorder affecting sensation in the lower extremity that may affect 69 

gait. Volunteers who did not meet these inclusion criteria were excluded. All 70 

participants were notified of the procedures and requirements and were invited 71 

to participate by signing an informed consent form. The study and all 72 

procedures were approved by the Ethics Committee of the UEL (#217/2012). 73 

 74 

 75 
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2.2 Instrumentation 76 

 77 

Data were collected using a waterproof force platform (Bertec 78 

Corporation®, model FP4060-08-2000), with dimensions of 0.6X0.6X0.1 m, 79 

sample rate of the acquisition system of 1000 Hz, capacity of Fz = 5000N and 80 

Fx = Fy = 2500 N and 340 Hz (Fz) and 550 (Fx = Fy) of natural frequency with a 81 

16-bit A/D converter. The FP was placed in the final third of a 10 meter  pool, 82 

located in the Aquatic Physical Therapy Center “Prof. Paulo A. Seibert”, with 83 

dimensions of 15x13x1.30 m, extent of submersion around 1.20 m and water 84 

temperature of 32.5 °C. 85 

 86 

2.3 Procedure 87 

 88 

The individuals walked on the platform at a self-selected speed, and 89 

were asked to walk onto it with their preferred leg. The test was repeated three 90 

times or until three valid data recordings had been collected. A trial was 91 

considered successful when only one foot made contact with the platform 92 

(Figure 1); trials not meeting these criteria were excluded and another trial was 93 

performed. Participants were instructed to walk normally while looking straight 94 

ahead and not to look at the platform. 95 

Before starting data collection, participants practiced walking across the 96 

platform until they were comfortable with the procedure. The gait cycle started 97 

with initial foot contact with the force platform and ended when this foot left the 98 

platform. For the test-retest reliability, two recordings were performed with a 48-99 

hour interval between them. 100 
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2.4  Data Processing 101 

 102 

Force plate data were analyzed using a specific routine in Matlab® 7.9.0 103 

(R2009b, Mathworks, TM), smoothed by a Butterworth low-pass filter of 4th 104 

order and cutoff frequency of 5 Hz defined by spectral analysis (Carneiro et al., 105 

2012, Haupenthal et al., 2010b and Miyoshi et al., 2004). 106 

The analyzed GRF components were the vertical (Fz), anteroposterior 107 

(Fx) and mediolateral (Fy). Maximum and minimum values were selected from 108 

the curve profiles to assess the reliability of gait parameters. For the Fz 109 

component, the first peak is the response to load (Fz1), the second point is the 110 

valley and represents the average support (valley) and the second peak 111 

represents the terminal support (Fz2) (White et al., 1999). For the Fx 112 

component, the point selected represents the phase-end or maximum 113 

propulsion. Two points were considered for the Fy component, the first peak 114 

(Fy1) represents a lateral thrust during loading, during which time the foot is 115 

moving from a supinated position into pronation and the second peak (Fy2) is a 116 

small lateral force often seen during the final push off stage (these parameters 117 

are demonstrated in Figure 2) (Miyoshi et al., 2004 and Richards, 2008). 118 

Furthermore, the acceptance rates (AR) which correspond to the curve slope 119 

during the loading phase were analyzed, calculated by dividing the value of the 120 

response to load by the difference between the beginning and the force peak 121 

(Fz1/Δt), as well the propelling charges which are given by dividing the Fz2 by 122 

the time difference of the peak and the valley (ΔFz2/Δt) (Sacco et al., 2012).  123 

To set the gait cycle, the mean and standard deviation (SD) of the 124 

baseline from the Fz data before foot contact were calculated. Thus, the 125 
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beginning of the gait cycle was defined as the local minimum of the curve, 126 

which preceded the moment at which the Fz exceeded the mean value of the 127 

baseline added to four standard deviations.  128 

Data were normalized by body weight of the subject. An example of a 129 

normalized profile curve can be seen in Figure 2. For the reliability analysis, the 130 

average value of the three trials of each component was employed (Grainger et 131 

al., 1983 and Diss, 2001). 132 

 133 

2.5 Statistical analysis 134 

 135 

As the normality assumption for the data was not met, data are 136 

presented as median (Md) and quartiles (25-75%). The test-retest reliability was 137 

assessed by calculating the intraclass correlation coefficient (ICC) (one-way 138 

random effect model) and the agreement analysis proposed by Bland and 139 

Altman (1986). An ICC value < 0.4 was considered as poor reproducibility, 0.4 ≤ 140 

ICC ≤ 0.75 indicates fair to good reproducibility and > 0.75 indicates excellent 141 

reproducibility (Fleiss, 1986). 142 

The Bland-Altman agreement was incorporated with the mean difference 143 

( ) and their respective 95% confidence intervals (CI), the SD of mean 144 

difference (SD of ) and the limits of agreement (LA) analyses. In addition the 145 

value of the SEM (standard error of measurement) was calculated through the 146 

ICC, using the number of errors that can be allocated in the sample; SEM was 147 

calculated using the equation SD x  (Jewell, 2011). In addition, the 148 

Wilcoxon test was conducted to compare the forces from the first and the 149 

second test in order to evaluate the effect of familiarization on the results. 150 
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Analyzes were performed in the programs IBM SPSS (Statistical Package for 151 

Social Sciences, version 22; Armonk, NY: IBM Corp.) and MedCalc Software 152 

bvba (version 15.6.1; Ostend, BE). 153 

 154 

3. Results 155 

 156 

The values for the vertical component of the GRF were expected for an 157 

aquatic activity. These values (minimal - maximal) ranged from 0.13 - 0.41 158 

N/BM for the Fz1; 0.03 - 0.37 N/BM for the valley and 0.14 - 0.41 N/BM for the 159 

Fz2.  160 

The SEM values were low, indicating that the error incorporated in the 161 

data was minimal. In relation to the GRF values in the test-retest, statistical 162 

differences were found for the Fz1 and Fz2 and no differences for the other 163 

parameters (valley, Fx, Fy1, Fy2, AR and PR), which shows that the subjects 164 

were able to reproduce the same speed in both tests (Table 1). Despite the 165 

differences found for Fz1 and 2, the values for response to load and terminal 166 

support, in terms of interquartile range, are alike and moreover, does not seem 167 

to be relevant in practice. 168 

The test-retest results demonstrated a reliability ranging from poor to 169 

excellent for the ICC values and a mean difference close to zero for all 170 

parameters. For the Fz and Fx components the reliability values were excellent, 171 

while for the rate of acceptance and propulsion was considered good. For the 172 

Fy component, the reliability was also good for Fy1 and poor for Fy2, despite 173 

this the mean difference was also low, showing that the two measures (test-174 
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retest) were similar. Further information about ICC and mean difference can be 175 

found in Table 2 and in Figures 3 to 6. 176 

 177 

4. Discussion 178 

 179 

The aim of this study was to investigate the test-retest reliability of kinetic 180 

gait parameters, as measured by a FP, in healthy individuals in water. The 181 

results demonstrated variability in the ICC values from 0.24 to 0.87, ranging 182 

from poor to excellent. Since the calculation of the ICC in isolation does not 183 

provide enough information about the reliability of the measurements, the 184 

values generated in the Bland-Altman plots and SEM were used to complement 185 

the ICC (Rankin and Stokes, 1998).The identified SEM values in the present 186 

study were close to zero, indicating that the number of errors attributed to the 187 

sample was low (Jewell, 2011). When the difference between test and re-test 188 

was analyzed, it can be observed that there was an increase in Fz 1 and 2. It is 189 

possible that this may be  due to the practice effect, however, the values for 190 

response to load and terminal support, in terms of interquartile range, are alike 191 

and moreover, this does not seem to be relevant in practice. 192 

The findings of this current study support the findings of Fortin et al. 193 

(2008) who evaluated the repeatability of gait parameters individuals with 194 

scoliosis. These authors reported that the SEM values found for the three 195 

kinetic components of the gait were low. The mean difference values identified 196 

in this study by the Bland and Altman plots (Bland and Altman 1986) were close 197 

to zero for all items, demonstrating little variation among the data.  198 
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The component that demonstrated an excellent result for reliability was 199 

the Fz, which is similar to previous studies carried out on land, in which the 200 

highest values were also found for Fz (Kadaba et al., 1989 and White et al., 201 

1999). In the literature, this component is the most frequently used to evaluate 202 

GRF in gait (Amadio and Baumann, 2000). Owing to the action of buoyancy and 203 

hence the reduced apparent weight, the forces applied to the force platform are 204 

also decreased, with a possible reduction in Fz of 60-70% (minimum of 0.13 205 

and maximum of 0.41 for Fz1; minimum of 0.03 and maximum of 0.37 for Valley 206 

and minimum of 0.14 and maximum of 0.41 for Fz2) compared to on land 207 

(minimum of 0.91 and maximum of 1.18 for Fz1; minimum of 0.71 and 208 

maximum of 0.95 for Valley and minimum of 0.92 and maximum of 1.23 for 209 

Fz2). When buoyancy is added to the drag force in water, a lower speed (about 210 

36% compared to on land) can be observed (Barela et al., 2006) and a longer 211 

contact time on the FP is generated. Furthermore, lower muscle activity is 212 

observed in the water, thus the curve pattern is characterized by less defined 213 

peaks (Nakasawa et al., 1994; Miyoshi et al., 2005 and Carneiro et al., 2012).  214 

It is mainly through the Fz analysis, that is detected the moment that the 215 

heel touch ground (Hreljac and Marshall, 2000; Ghoussayni et al., 2004; 216 

O'Connor et al., 2007, Desailly et al., 2009; Asha et al., 2012), allowing a direct 217 

relationship between the time of support and the resultant forces of the muscle 218 

actions that occur in the lower limbs.  As a result, a product of the vector of the 219 

GRF is generated and transmitted to the body through the feet, making the 220 

vertical component the largest part of the GRF (Winter, 1980). Moreover, it is 221 

the component that best represents the GRF with characteristic and consistent 222 

graphics, which can provide information about mechanical stress (Piscoya et 223 
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al., 2005). This measure can also  characterize joint contact forces, which seem 224 

to play an important role in the development of certain musculoskeletal 225 

disorders (Piscoya et al., 2005). 226 

For the Fx component, excellent ICC values were identified with low 227 

mean difference values, which also supports the findings of published studies 228 

exploring GRF on land (Kadaba et al., 1989 and Fortin et al., 2008). When 229 

analyzing the variation of the Fx component, in the studies of Miyoshi et al. 230 

(2004) and Orselli and Duarte, (2011), only positive values (anterior direction) 231 

were found, which is consistent with the present study which found positive 232 

peaks rather than a negative (posterior direction) valley followed by a positive 233 

peak (profile curve commonly found on land). This pattern seems appropriate 234 

since, by overcoming all water resistance, participants must generate the gait 235 

acceleration phase (Miyoshi et al., 2005), thus altering the gait support phase, 236 

tilting the body forward and only stepping on the force platform when their lower 237 

limb exceeds the longitudinal axis of the body, eliminating the deceleration 238 

phase (Miyoshi et al., 2005 and Haupenthal et al., 2010a). In this current study, 239 

only the point of the Fx component (the final peak) was evaluated, this peak 240 

represents the maximum propulsion, as the curve profile in water does not allow 241 

any other point to be stated with certainty. 242 

The Fy component of gait (medial-lateral displacement) demonstrated 243 

the lowest reliability values, probably due to the  influence of fluid mechanics, it 244 

is known that medio-lateral movements are more unstable compared to 245 

anteroposterior (Kuo and Donelan, 2010), which changes the movements of the 246 

ankle and causes irregular behavior of this joint (Sutherland et al., 1980; 247 

Miyoshi et al., 2005). During gait on land, the ankle joint has an important role in 248 
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supporting the body weight, however, in the aquatic environment, buoyancy 249 

decreases the weight of the individual and consequently there is less necessity 250 

for the ankle joint to provide support (Miyoshi et al., 2005; Orselli and Duarte, 251 

2011; Sutherland et al., 1980). 252 

Another possibility for the low reliability of the Fy component may be 253 

related to the choice of the peak of the curve that was selected. In water the Fy 254 

component does not follow a curve profile as in the case of the other 255 

components. The results demonstrated that the Fy component varied across 256 

participants, which perhaps suggests that the chosen point on the curve profile 257 

may not have been the most suitable, thus increasing overall variability. 258 

During gait, the swing phase leg directly influences the medio-lateral 259 

vector of GRFs due to displacement of the body center of mass to the side of 260 

the stance leg. In addition, the turbulence generated by the oscillating limb and 261 

the reduction of muscular activity in the water can interfere with the amplitude 262 

value of Fy (Sutherland et al., 1980; Barela et al., 2006 and Lin et al., 2014). 263 

The range of ICC values of Fy demonstrated poor to good reliability (between 264 

0.24 and 0.68), which has been observed by others on land, previous authors 265 

have attributed this high variability to intrinsic factors. According to Redfern and 266 

Schumann (1994), the high variability may be associated with the positioning of 267 

the foot, which varies between individuals and also between each trial. 268 

Furthermore, there are the effects of drag force, buoyancy and turbulent 269 

flow, which can promote variability in the Fy component (Fy1 and Fy2) (Miyoshi 270 

et al., 2005). The reliability values for the acceptance and propulsion rate were 271 

high, which may be explained by some physical properties of water such as 272 
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drag force, as well as the lower speed that promotes a decrease in gait kinetic 273 

parameters (Kyröläinen et al., 2001 and Barela et al., 2006). 274 

In this study the speed was not standardized, which could be a limiting 275 

factor, however no differences were found in the duration of the stance phase 276 

when comparing the test and retest (Lafuente et al., 2000 and Kyröläinen et al., 277 

2001). In addition, the data did not present a normal distribution, but they were 278 

analyzed by Bland and Altman plots and ICC, which may have introduced some 279 

bias  in to the results. Thus, future studies should standardize the gait speed of 280 

the participants and evaluate simultaneously kinematics and joint moments. 281 

5. Conclusion 282 

 283 

It is important to be able demonstrate the reliability of the assessment of 284 

the components of gait for research and clinical practice. Through accurate 285 

knowledge of the GRFs during different exercises, exercise prescription can be 286 

made more specific and appropriate for the patient.  The test-retest reliability of 287 

the kinetic gait parameters of healthy individuals, in the aquatic environment, 288 

presented poor to excellent reliability. The vertical and anteroposterior 289 

components of gait demonstrated high ICC values, and the vertical component 290 

was the most reliable, although some practice effect may have influenced this 291 

measure; however, caution should be taken when evaluating the medial-lateral 292 

component, as its reliability was low. 293 

 294 

 295 

 296 

 297 

 298 

 299 
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