10 research outputs found
Recommended from our members
An Overview on Feral Hog Management in Brazil after Three Years of Control Regulation
Feral hogs are known to be expanding their range in Brazil since late 1980s and reports of damage to crops and livestock predation have become more frequent lately. Just recently, the use of lethal methods for feral hog control was legalized in Brazil, and there are still several restrictions, particularly towards the purchase and transportation of guns and ammunition. Results of questionnaires from feral hog hunters showed that around half of them still act illegally, and hunting with dogs was the main technique used for controlling feral hogs. We believe that to enhance feral hog control in Brazil, legislation needs to be reviewed, and a national control program needs to be created involving researchers, government agencies, and hunters, working together on development and implementation of more efficient techniques for feral hog population control
Recommended from our members
An Overview on Feral Hog Management in Brazil after Three Years of Control Regulation
Feral hogs are known to be expanding their range in Brazil since late 1980s and reports of damage to crops and livestock predation have become more frequent lately. Just recently, the use of lethal methods for feral hog control was legalized in Brazil, and there are still several restrictions, particularly towards the purchase and transportation of guns and ammunition. Results of questionnaires from feral hog hunters showed that around half of them still act illegally, and hunting with dogs was the main technique used for controlling feral hogs. We believe that to enhance feral hog control in Brazil, legislation needs to be reviewed, and a national control program needs to be created involving researchers, government agencies, and hunters, working together on development and implementation of more efficient techniques for feral hog population control
Camera trap surveys of A tlantic F orest mammals: A data set for analyses considering imperfect detection (2004–2020)
Abstract
Camera traps became the main observational method of a myriad of species over large areas. Data sets from camera traps can be used to describe the patterns and monitor the occupancy, abundance, and richness of wildlife, essential information for conservation in times of rapid climate and land‐cover changes. Habitat loss and poaching are responsible for historical population losses of mammals in the Atlantic Forest biodiversity hotspot, especially for medium to large‐sized species. Here we present a data set from camera trap surveys of medium to large‐sized native mammals (>1 kg) across the Atlantic Forest. We compiled data from 5380 ground‐level camera trap deployments in 3046 locations, from 2004 to 2020, resulting in 43,068 records of 58 species. These data add to existing data sets of mammals in the Atlantic Forest by including dates of camera operation needed for analyses dealing with imperfect detection. We also included, when available, information on important predictors of detection, namely the camera brand and model, use of bait, and obstruction of camera viewshed that can be measured from example pictures at each camera location. Besides its application in studies on the patterns and mechanisms behind occupancy, relative abundance, richness, and detection, the data set presented here can be used to study species' daily activity patterns, activity levels, and spatiotemporal interactions between species. Moreover, data can be used combined with other data sources in the multiple and expanding uses of integrated population modeling. An R script is available to view summaries of the data set. We expect that this data set will be used to advance the knowledge of mammal assemblages and to inform evidence‐based solutions for the conservation of the Atlantic Forest. The data are not copyright restricted; please cite this paper when using the data.Resumo
As armadilhas fotográficas tornaram‐se o principal método de observação de muitas espécies em grandes áreas. Os dados obtidos com armadilhas fotográficas podem ser usados para descrever os padrões e monitorar a ocupação, abundância e riqueza da vida selvagem, informação essencial para a conservação em tempos de rápidas mudanças climáticas e de cobertura do solo. A perda de habitat e a caça furtiva são responsáveis pelas perdas populacionais históricas de mamíferos no
hotspot
de biodiversidade da Mata Atlântica, especialmente para espécies de médio e grande porte. Aqui apresentamos um conjunto de dados de levantamentos com armadilhas fotográficas de mamíferos de médio e grande porte (>1 kg) em toda a Mata Atlântica. Compilamos dados de 5.380 armadilhas fotográficas instaladas no nível do chão em 3.046 locais, de 2004 a 2020, resultando em 43.068 registros de 58 espécies. Esses dados acrescentam aos conjuntos de dados existentes de mamíferos na Mata Atlântica por incluir as datas de operação das câmeras, que são necessárias para análises que lidam com detecção imperfeita. Também incluímos, quando disponíveis, informações sobre importantes preditores de detecção, como marca e modelo da câmera, uso de isca e obstrução do visor da câmera que pode ser medido a partir de imagens de exemplo em cada local da câmera. Além de estudos sobre os padrões e mecanismos por trás da ocupação, abundância relativa, riqueza e detecção, o conjunto de dados aqui apresentado pode ser usado para estudar os padrões de atividade diária das espécies, nível de atividade e interações espaço‐temporais entre as espécies. Além disso, os dados podem ser usados em combinação com outras fontes de dados em diversas análises com modelagem populacional integrada. Um script R está disponível para visualizar um resumo do conjunto de dados. Esperamos que este conjunto de dados seja usado para aumentar o conhecimento sobre as assembleias de mamíferos e usado para informar soluções baseadas em evidências para a conservação da Mata Atlântica. Os dados não são restritos por direitos autorais e, por favor, cite este documento ao usar os dados.Abstract
Camera traps became the main observational method of a myriad of species over large areas. Data sets from camera traps can be used to describe the patterns and monitor the occupancy, abundance, and richness of wildlife, essential information for conservation in times of rapid climate and land‐cover changes. Habitat loss and poaching are responsible for historical population losses of mammals in the Atlantic Forest biodiversity hotspot, especially for medium to large‐sized species. Here we present a data set from camera trap surveys of medium to large‐sized native mammals (>1 kg) across the Atlantic Forest. We compiled data from 5380 ground‐level camera trap deployments in 3046 locations, from 2004 to 2020, resulting in 43,068 records of 58 species. These data add to existing data sets of mammals in the Atlantic Forest by including dates of camera operation needed for analyses dealing with imperfect detection. We also included, when available, information on important predictors of detection, namely the camera brand and model, use of bait, and obstruction of camera viewshed that can be measured from example pictures at each camera location. Besides its application in studies on the patterns and mechanisms behind occupancy, relative abundance, richness, and detection, the data set presented here can be used to study species' daily activity patterns, activity levels, and spatiotemporal interactions between species. Moreover, data can be used combined with other data sources in the multiple and expanding uses of integrated population modeling. An R script is available to view summaries of the data set. We expect that this data set will be used to advance the knowledge of mammal assemblages and to inform evidence‐based solutions for the conservation of the Atlantic Forest. The data are not copyright restricted; please cite this paper when using the data.Resumo
As armadilhas fotográficas tornaram‐se o principal método de observação de muitas espécies em grandes áreas. Os dados obtidos com armadilhas fotográficas podem ser usados para descrever os padrões e monitorar a ocupação, abundância e riqueza da vida selvagem, informação essencial para a conservação em tempos de rápidas mudanças climáticas e de cobertura do solo. A perda de habitat e a caça furtiva são responsáveis pelas perdas populacionais históricas de mamíferos no
hotspot
de biodiversidade da Mata Atlântica, especialmente para espécies de médio e grande porte. Aqui apresentamos um conjunto de dados de levantamentos com armadilhas fotográficas de mamíferos de médio e grande porte (>1 kg) em toda a Mata Atlântica. Compilamos dados de 5.380 armadilhas fotográficas instaladas no nível do chão em 3.046 locais, de 2004 a 2020, resultando em 43.068 registros de 58 espécies. Esses dados acrescentam aos conjuntos de dados existentes de mamíferos na Mata Atlântica por incluir as datas de operação das câmeras, que são necessárias para análises que lidam com detecção imperfeita. Também incluímos, quando disponíveis, informações sobre importantes preditores de detecção, como marca e modelo da câmera, uso de isca e obstrução do visor da câmera que pode ser medido a partir de imagens de exemplo em cada local da câmera. Além de estudos sobre os padrões e mecanismos por trás da ocupação, abundância relativa, riqueza e detecção, o conjunto de dados aqui apresentado pode ser usado para estudar os padrões de atividade diária das espécies, nível de atividade e interações espaço‐temporais entre as espécies. Além disso, os dados podem ser usados em combinação com outras fontes de dados em diversas análises com modelagem populacional integrada. Um script R está disponível para visualizar um resumo do conjunto de dados. Esperamos que este conjunto de dados seja usado para aumentar o conhecimento sobre as assembleias de mamíferos e usado para informar soluções baseadas em evidências para a conservação da Mata Atlântica. Os dados não são restritos por direitos autorais e, por favor, cite este documento ao usar os dados
Neotropical xenarthrans: a dataset of occurrence of xenarthran species in the Neotropics.
International audienceXenarthrans—anteaters, sloths, and armadillos—have essential functions forecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosys-tem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts withdomestic dogs, these species have been threatened locally, regionally, or even across their fulldistribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths.Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae(3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data onDasypus pilo-sus(Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized,but new genetic studies have revealed that the group is represented by seven species. In thisdata paper, we compiled a total of 42,528 records of 31 species, represented by occurrence andquantitative data, totaling 24,847 unique georeferenced records. The geographic range is fromthe southern United States, Mexico, and Caribbean countries at the northern portion of theNeotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regardinganteaters,Myrmecophaga tridactylahas the most records (n=5,941), andCyclopessp. havethe fewest (n=240). The armadillo species with the most data isDasypus novemcinctus(n=11,588), and the fewest data are recorded forCalyptophractus retusus(n=33). Withregard to sloth species,Bradypus variegatushas the most records (n=962), andBradypus pyg-maeushas the fewest (n=12). Our main objective with Neotropical Xenarthrans is to makeoccurrence and quantitative data available to facilitate more ecological research, particularly ifwe integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, andNeotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure,habitat loss, fragmentation effects, species invasion, and climate change effects will be possiblewith the Neotropical Xenarthrans data set. Please cite this data paper when using its data inpublications. We also request that researchers and teachers inform us of how they are usingthese data
Recommended from our members
NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics
Xenarthrans—anteaters, sloths, and armadillos—have essential functions forecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosys-tem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts withdomestic dogs, these species have been threatened locally, regionally, or even across their fulldistribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths.Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae(3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data onDasypus pilo-sus(Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized,but new genetic studies have revealed that the group is represented by seven species. In thisdata paper, we compiled a total of 42,528 records of 31 species, represented by occurrence andquantitative data, totaling 24,847 unique georeferenced records. The geographic range is fromthe southern United States, Mexico, and Caribbean countries at the northern portion of theNeotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regardinganteaters,Myrmecophaga tridactylahas the most records (n=5,941), andCyclopessp. havethe fewest (n=240). The armadillo species with the most data isDasypus novemcinctus(n=11,588), and the fewest data are recorded forCalyptophractus retusus(n=33). Withregard to sloth species,Bradypus variegatushas the most records (n=962), andBradypus pyg-maeushas the fewest (n=12). Our main objective with Neotropical Xenarthrans is to makeoccurrence and quantitative data available to facilitate more ecological research, particularly ifwe integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, andNeotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure,habitat loss, fragmentation effects, species invasion, and climate change effects will be possiblewith the Neotropical Xenarthrans data set. Please cite this data paper when using its data inpublications. We also request that researchers and teachers inform us of how they are usingthese data
NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics
Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data
NEOTROPICAL ALIEN MAMMALS: a data set of occurrence and abundance of alien mammals in the Neotropics
Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal-central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation-related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data
NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics
Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data