90 research outputs found

    An autonomic delivery framework for HTTP adaptive streaming in multicast-enabled multimedia access networks

    Get PDF
    The consumption of multimedia services over HTTP-based delivery mechanisms has recently gained popularity due to their increased flexibility and reliability. Traditional broadcast TV channels are now offered over the Internet, in order to support Live TV for a broad range of consumer devices. Moreover, service providers can greatly benefit from offering external live content (e. g., YouTube, Hulu) in a managed way. Recently, HTTP Adaptive Streaming (HAS) techniques have been proposed in which video clients dynamically adapt their requested video quality level based on the current network and device state. Unlike linear TV, traditional HTTP- and HAS-based video streaming services depend on unicast sessions, leading to a network traffic load proportional to the number of multimedia consumers. In this paper we propose a novel HAS-based video delivery architecture, which features intelligent multicasting and caching in order to decrease the required bandwidth considerably in a Live TV scenario. Furthermore we discuss the autonomic selection of multicasted content to support Video on Demand (VoD) sessions. Experiments were conducted on a large scale and realistic emulation environment and compared with a traditional HAS-based media delivery setup using only unicast connections

    Data on ion-exchange membrane fouling by humic acid during electrodialysis

    Get PDF
    This data paper aims to provide data on the effect of the process settings on the fouling of an electrodialysis pilot installation treating a sodium chloride solution (0.1 M and 0.2 M) in the presence of humic acid (1 g/L). This data was used by “Colloidal fouling in electrodialysis: a neural differential equations model” to construct a predictive model and provides interpretive insights into this dataset. 22 electrodialysis fouling experiments were performed where the electrical resistance over the electrodialysis stack was monitored while varying the crossflow velocity (2.0 cm/s - 3.5 cm/s) in the compartments, the current applied (1.41 A - 1.91 A) to the stack and the salt concentration in the incoming stream. The active cycle was maintained for a maximum of 1.5 h after which the polarity was reversed to remove the fouling layer. Additional data is gathered such as the temperature, pH, flow rate, conductivity, pressure in the different compartments of the electrodialysis stack. The data is processed to remove the effect of temperature fluctuations and some filtering is performed. To maximise the reuse potential of this dataset, both raw and processed data are provided along with a detailed description of the pilot installation and sensor locations. The data generated can be useful for researchers and industry working on electrodialysis fouling and the modelling thereof. The availability of conductivity and pH in all compartments is useful to investigate secondary effects of humic acid fouling such as the eventual decrease in membrane permselectivity or water splitting effects introduced by the fouling layer

    Colloidal fouling in electrodialysis : a neural differential equations model

    No full text
    The attachment of colloids to the ion-exchange membranes in electrodialysis is an important hurdle when processing bio-based process streams. Previous research showed that fouling strongly depends on the crossflow velocity, the current and the salt concentration of the medium. Predicting the influence of these variables on the fouling rate is challenging due to the complex physics at play and optimising the process conditions to reduce fouling remains a challenge. The objective of this study is the development of a model to predict the dynamic behaviour of electrodialysis fouling under varying process settings to facilitate this optimisation. A neural differential equation is fit to experimental data of an electrodialysis pilot undergoing humic acid fouling. We show that this model can predict the fouling rate even when using a limited set of experimental data. The robustness of the model is demonstrated by a simulation study and a sensitivity analysis indicates that the crossflow velocity is the most important variable influencing the fouling rate (approximate to 40%). Both the effect of the current (approximate to 20%), the salt concentration (approximate to 13%) and their interaction effects are considerable. With the model, the evolution of the stack resistance as a result of membrane fouling can be simulated, facilitating process control or decision-making

    PCN based admission control for autonomic video quality differentiation: design and evaluation

    Get PDF
    The popularity of multimedia services has introduced important new challenges for broadband access network management. As these services are very prone to network anomalies such as packet loss and jitter, accurate admission control mechanisms are needed to avoid congestion. Traditionally, centralized admission control mechanisms often underperform in combination with multimedia services, as they fail to effectively characterize the amount of needed resources. Recently, measurement based admission control mechanisms have been proposed such as the IETF Pre-Congestion Notification (PCN) mechanism, where the network load is measured at each intermediate node and signaled to the edge, where the admittance decision takes place. In this article, we design a PCN based admission control mechanism, optimized for protecting bursty traffic such as video services, which is currently not studied in the PCN working group. We evaluated and identified the effect of PCN's configuration in protecting bursty traffic. The proposed admission control mechanism features three main improvements to the original PCN mechanism: first, it uses a new measurement algorithm, which is easier to configure for bursty traffic. Second, it allows to automatically adapt PCN's configuration based on the traffic characteristics of the current sessions. Third, it introduces the differentiation between video quality levels to achieve an admission decision per video quality level of each request. The mechanism has been extensively evaluated in a packet switched simulation environment, which shows that the novel admission control mechanism is able to protec

    Shared content addressing protocol (SCAP): optimizing multimedia content distribution at the transport layer

    Get PDF
    In recent years, the networking community has put a significant research effort in identifying new ways to distribute content to multiple users in a better-than-unicast manner. Scalable delivery is more important now video is the dominant traffic type and further growth is expected. To make content distribution scalable, in-network optimization functions are needed such as caches. The established transport layer protocols are end-to-end and do not allow optimizing transport below the application layer, hence the popularity of overlay application layer solutions located in the network. In this paper, we introduce a novel transport protocol, the Shared Content Addressing Protocol (SCAP) that allows in-network intermediate elements to participate in optimizing the delivery process, using only the transport layer. SCAP runs on top of standard IP networks, and SCAP optimization functions can be plugged-in the network transparently as needed. As such, only transport protocol based intermediate functions need to be deployed in the network, and the applications can stay at the topological end points. We define and evaluate a prototype version of the SCAP protocol using both simulation and a prototype implementation of a transparent SCAP-only intermediate optimization function
    corecore