
An Autonomic Delivery Framework for HTTP
Adaptive Streaming in Multicast-enabled

Multimedia Access Networks
Niels Bouten∗, Steven Latré∗, Wim Van De Meerssche∗,

Koen De Schepper†, Bart De Vleeschauwer†, Werner Van Leekwijck† and Filip De Turck∗
∗Ghent University - IBBT - IBCN - Department of Information Technology

Gaston Crommenlaan 8/201, B-9050 Gent, Belgium, e-mail: niels.bouten@intec.ugent.be
†Alcatel-Lucent Bell Labs, Copernicuslaan 50, B-2018 Antwerpen, Belgium

Abstract—The consumption of multimedia services over
HTTP-based delivery mechanisms has recently gained popularity
due to their increased flexibility and reliability. Traditional
broadcast TV channels are now offered over the Internet, in
order to support Live TV for a broad range of consumer devices.
Moreover, service providers can greatly benefit from offering
external live content (e.g., YouTube, Hulu) in a managed way.
Recently, HTTP Adaptive Streaming (HAS) techniques have
been proposed in which video clients dynamically adapt their
requested video quality level based on the current network and
device state. Unlike linear TV, traditional HTTP- and HAS-based
video streaming services depend on unicast sessions, leading to a
network traffic load proportional to the number of multimedia
consumers. In this paper we propose a novel HAS-based video
delivery architecture, which features intelligent multicasting and
caching in order to decrease the required bandwidth considerably
in a Live TV scenario. Furthermore we discuss the autonomic
selection of multicasted content to support Video on Demand
(VoD) sessions. Experiments were conducted on a large scale and
realistic emulation environment and compared with a traditional
HAS-based media delivery setup using only unicast connections.

I. INTRODUCTION

During the last decade, the consumption of multimedia
services over the Internet has witnessed an enormous increase.
In terms of bandwidth, these services now have the largest
share in the network [1]. Additionally, multimedia services
such as video streaming, require stringent quality guarantees
in order to meet the customers’ demands in terms of Quality
of Experience (QoE). These video services can be divided into
two main categories: Internet Protocol Television (IPTV) and
Over-The-Top (OTT) video services. IPTV services are offered
by a network provider as part of its Triple Play service and
typically consist of the broadcast of the live television signal,
as well as additional services such as Video on Demand (VoD)
in which the QoE is managed through resource reservation.
OTT video services provide similar services, but the video
is delivered over the traditional best-effort Internet. YouTube
is probably one of the most popular OTT video providers,
offering both VoD and live streaming (e.g., of selected sport
events). Other service providers are now also offering their
broadcasting content as an OTT video service. For example,

Hulu was launched in March 2008 and offers VoD, live
streaming and additional interactivity as an OTT service.

The diversification of the services and devices has also led to
a diversification of service delivery requirements. Traditional
services offered by IPTV cannot be accessed by every device,
since they require the use of a custom set-top box. In an OTT
scenario the requirements are dependent on the network char-
acteristics of the end-user connection. Although UDP-based
connections were first envisioned to be a perfect candidate for
the real-time consumption of video, the increased importance
of QoE has resulted in a widespread adoption of the more
traditional HTTP-based techniques, where the video is down-
loaded reliably over HTTP. Currently, the major providers of
video content (e.g., YouTube, Hulu, BBC iPlayer) stream their
content over HTTP. Another advantage of HTTP streaming is
the smooth interaction with firewalls and NAT mechanisms.
More recently, HTTP Adaptive Streaming techniques (HAS)
have been proposed as an evolution of the initial progressive
download techniques. However, these techniques are prone
to congestion in the network, since they use the best-effort
Internet for content delivery. Managing the delivery of such
video services would be beneficial for both the end-user, by
ensuring a decent level of QoE, and the network providers,
diminishing the need to over-dimension the network.

To some extent, HTTP Adaptive streaming can provide
a solution to network congestion, since it allows seamless
degradation of the quality level. A more advisable solution
however would be to reduce the number of unicast connections
congesting the access network without reducing the per-
ceived quality, by applying a technique similar to a managed
Broadcast TV service. In a Live TV scenario, each unicast
connection will transfer the same live content at the same
time. Since these transfers are redundant, they can be grouped
into a single transfer. In this paper, we discuss the design of
a novel delivery framework that tackles the aforementioned
issues. More specifically, the contributions of the paper are:
a distributed architecture, enabling the scalable delivery of
live streaming, an autonomic management algorithm for on
demand video streaming and an emulation environment for
the evaluation of the proposed architecture. The framework978-1-4673-0269-2/12/$31.00 c© 2012 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55688993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

features a combination of multicasting and caching to trans-
parently transform a set of HAS connections into a single
multicast connection for delivery over a network. Furthermore,
an autonomic mechanism is proposed to select the content and
qualities to be multicasted in a Video on Demand scenario,
so to optimise the use of the available bandwidth on the
bottleneck and the perceived QoE by the end-user.

The remainder of this paper is structured as follows: first, an
overview of related technologies is presented in Section II. The
components of the architecture are presented in Section III,
followed by a discussion of the autonomic multicast manage-
ment in Section IV. In Section V, we discuss how the proposed
components of the delivery framework interact with each other
and the HAS video streamer and client, even under packet
loss scenarios. The performance of the delivery framework is
evaluated in Section VI. Finally, Section VII concludes this
paper and provides some directions for future work.

II. RELATED WORK

A. HTTP Adaptive Streaming

Several HTTP Adaptive Streaming protocols have been
proposed by industrial players, such as ISS Smooth Streaming
(Microsoft) [2], HTTP Live Streaming (Apple) [3] and HTTP
Dynamic Streaming (Adobe) [4]. Although differences exist in
their details, all protocols exhibit the same set of architectural
components. At the encoding side, the video content is first
encoded in several different quality levels and resolutions.
This is followed by a division of the content into segments
(typically several seconds worth of video) by a stream seg-
menter. These segments can be transported as a single file
over HTTP. For each quality level, the most recently generated
video segments are documented in a manifest file. This file
also holds additional segment information such as segment
location, size and quality. As such, the various segment files
are linked into one video sequence through the meta-data
contained in the manifest files. The segments and manifest files
are hosted on one or more media distribution servers, typically
HTTP web servers. Based on the information contained in
the manifest files, the clients request the appropriate media
segments through HTTP GET-methods. The client can then
decide to download higher or lower quality segments to
ensure a seamless rate adaptation. A video selection heuristic
contained in the video client is responsible for deciding which
quality levels are to be downloaded.

B. Multicast streaming of multimedia services

In a typical multimedia architecture, multicast techniques
are used for streaming live video as a broadcast signal to multi-
ple video clients (e.g., for live streaming). However, the use of
multicast has also been investigated for other types of services
such as Peer-to-peer (P2P) video multicast streaming using
Scalable Video Coding (SVC) [5] and Multiple Description
Video Coding (MDC) [6]. The solution presented in [6] uses a
meshed P2P network where peers are connected to each other
by UDP links to transmit streaming video. By using SVC,
different clients receive different video qualities depending on

their link capacity. While their solution focuses on the rate
adaptation decision, we use multicast to decrease the load on
the network.

Also for VoD services, multicast streaming solutions have
been proposed [7]. Here, the described multicast-like transfer
mechanism uses additional intelligence in the router in order
to tackle two problems: synchronisation of video delivery
requests and buffering of video packets. If a requested video
packet is received at a router, it is stored into the video request
synchronisation buffer and only released when enough video
data is available in the buffer. While this approach successfully
employs multicast for VoD services it results in long delays
when requesting a video. We specifically evaluate the response
times of our architecture to ensure that the additional delay is
limited. P2PVR [8] proposes a P2P-based VoD architecture
were peers are organised into a playback offset aware tree-
based overlay. On-demand streaming data is shared among
other peers with similar playback offset. Also a directory
assists peers, who are searching for nodes that possess the
expected streaming data. In our approach, we use a similar
tree-based overlay with a fixed number of proxies closer to
the video clients.

In the proposed architecture, a reliable HTTP connec-
tion is partly transformed (i.e. between two points in the
network) into a UDP-based multicast connection. As UDP
is an unreliable protocol, it is important to protect these
multicast connections sufficiently. Many multicast resilience
solutions focus on path reconstruction as part of a Carrier
Ethernet solution [9]. In this case, additional multicast trees
are constructed that can be used as a backup path once data
losses are detected. This solution is however not feasible
in a tree-based topology such as today’s access networks,
where only a single path exists between sender and receiver.
Other multicast resilience solutions are often derived from
resilience methods in wireless networks and focus on retrans-
mission techniques [10], adaptive redundancy techniques [11]
or codec-specific transcoding [12]. In our solution we use such
retransmission techniques to handle packet loss.

III. A SCALABLE ARCHITECTURE FOR VIDEO DELIVERY

The approach presented in this paper seamlessly introduces
multicast content delivery into an existing HAS-aware net-
work. The goal of the proposed architecture is to decrease the
required peak bandwidth of a Live TV service between HAS
server and client through a combination of multicast streaming
and content caching. To accomplish this, two component types
are added to the original architecture: a distribution server
and multiple delivery servers. The distribution server connects
to the HAS server acting as a client, downloading manifests
and segments on regular basis and forwarding them over a
UDP-based multicast connection to several connected delivery
servers. These delivery servers now act as a proxy for the
original HAS server and clients can connect and interact with
them in the same way as they would with the HAS server. The
first time a video becomes available, it is pushed via multicast
to several delivery servers, containing caches, closer to the

HAS ServerDistribution Server

HTTP ClientHTTP Server

Retransmissio
n Sender

Multicast
Sender

Memory

Manifest
Processing

Ingest

Delivery Server

HTTP ClientHTTP Server Memory

Multicast
Receiver

Retransmissio
n Receiver

Client

HTTP Client

Memory

Priority-Based
Media Delivery
Heuristic

Distribution

Media
Segmenter

Media
Encoder

HTTP HTTP

MC

HTTP

HTTP

Autonomic
Distribution
Management

Autonomic
Delivery

Management

Fig. 1. Designed distributed architecture for HAS-enabled content delivery using multicast,
enabling a seamless integration with existing HAS-based delivery technologies

video clients. When clients now request this video, it can be
downloaded from the caching servers, resulting in a consid-
erable decrease in bandwidth consumption. In the subsequent
sections, the two novel component types are discussed in more
detail. The proposed architecture is illustrated in Figure 1.

A. Distribution server

The distribution server is responsible for distributing the
video content pro-actively to the connected delivery servers
over multicast. The distribution server connects to the HAS
server through the HTTP Client and serves incoming requests
via the HTTP Server component. Video data is provided by
the Memory component, which acts as a cache. The Manifest
Processing continuously polls the HAS server for new man-
ifests at a configurable rate (e.g., every second). When new
segments are available and the channel is currently multicas-
ted, the Ingest component will order the Multicast Sender to
start multicasting the content in the selected qualities. Within
one multicast tree, segments are pushed onto the tree in a
chronological order as they appear in the video sequence.
Whenever a manifest becomes available, it is pushed upon
its associated multicast tree, taking into account the condition
that the first packets of all selected qualities of a segment
have to be sent before sending a manifest first mentioning
that segment. This ensures that every segment is available at
the cache of the delivery server before the content can be
requested by a video client. Since multicast over UDP is an
unreliable transport mechanism, resilience measures need to be
taken. The Retransmission Sender is responsible for handling
retransmission requests from the delivery servers. Both unicast
and multicast retransmissions are supported, as well as a HTTP
fallback mechanism. Each packet sent by the Multicast Sender
is forwarded to the Retransmission Sender history, allowing
the retransmission of a single packet.

B. Delivery server

The content received over multicast from the distribution
server through the Multicast Receiver is stored locally by the
Memory component. From then on the delivery server fulfils
the role of local proxy for the HAS server towards the clients.
Requests from the connected clients are received through the

HTTP Server component. First the Memory is checked for
the requested files. When these are not available, the HTTP
Client is contacted to retrieve them from the distribution
server over HTTP. On the detection of packet loss (i.e. a
gap in sequence numbers between two consecutive packets),
an error message concerning the packet loss is reported. The
Memory then contacts the Retransmission Receiver to request
the retransmission of the reported packets. A more in-depth
discussion of the retransmission mechanism can be found in
Section V-B.

IV. AUTONOMIC MULTICAST MANAGEMENT FOR VIDEO
ON DEMAND

The architecture discussed earlier provides a decrease of
the consumed bandwidth between distribution and delivery
servers through a combination of caching and multicasting
in a HAS-based Live TV scenario. However, in a realistic
scenario, a mixture of Video on Demand and Live TV services
will occur. In this mix, several unicast VoD connections can
also be mapped on a single multicast connection. Which
unicast connections are suited for such a multicast grouping
depends on the status of the caches and the future requests
at the delivery servers. As such, the mapping of unicast
VoD connections is far less trivial than that of Live TV.
In this section, we propose a novel management algorithm
for autonomously selecting which unicast flows need to be
mapped to a multicast connection in order to benefit from a
reduced bandwidth consumption in a HAS-based Video on
Demand scenario. This scenario requires management of the
multicasted content since the clients no longer request the
video segments in a synchronised way. As multicasting video
from the distribution server to the delivery servers is only use-
ful when the video is served by multiple delivery servers, the
Autonomic Distribution Management requires regular reports
from the various delivery servers, to assess the popularity of
the video items in the VoD catalogue. The caches located
at the delivery server allow temporarily storing the video
flows and thus relax the need for the video flows to be fully
synchronised. Hence, the requests for video content do not
need to occur simultaneously in order to be mapped to a
multicast connection, but can occur within a predefined time

window of W segments.
The size of W depends on the cache size and replacement

algorithm used at the delivery servers. The algorithm at the
distribution server groups all requested segments for a certain
video within the time window W starting from the highest
segment number (suppose H) to the lowest segment number
larger than H −W (suppose L). If the number of requesting
delivery servers (suppose D) for that range is larger than a
certain threshold, the content for that video is now multicasted
starting with segment H . Since this segment will at least be
available for a time of W segments at the delivery servers, the
clients that were requesting segment L, will be able to request
segment H from the cache. This grouping of unicast flows will
result in a reduced bandwidth consumption proportional to D.
The multicast trees that were created this way are communi-
cated to the Autonomic Delivery Management, which can now
autonomously decide which multicast trees to join or leave
depending on the number of clients requesting that content.
Each interval, the created multicast trees are re-evaluated, so to
optimise the number of served delivery servers. The algorithm
will be further optimised by sharing knowledge of the cache
state of the delivery server to the distribution server.

V. COMPONENT INTERACTION

A. Impact on delay

The proposed architecture modifies the delivery of HAS
video, therefore there are some important consequences on
the delay for the retrieval of manifest files on the Client. A
first additional delay is caused by the fact that a manifest is
updated at a constant rate at the HAS server, but the Manifest
Processing component only periodically polls the server for
new manifests. A second delay is caused by the time needed
to download a segment, since a manifest is only forwarded
after the first packets of the first segment are present at the
delivery servers. This delay is equal to the time needed to
send a segment from HAS to distribution server. Thirdly, the
time needed to multicast the first packet of the first segment
mentioned in the manifest causes extra delay. The last source
of additional delay is the time needed to multicast the first
packet of a manifest. When retrieving segments over HTTP
there is no extra delay apart from the download delay. However
since the delivery servers are closer to the clients in the access
network, link delays for requesting and downloading video are
much smaller than in the original HAS delivery framework,
where clients are further removed from the HAS-server.

Figure 2 illustrates the additional delay with respect to the
live moment a client experiences, relative to the offset of the
client start-up time with respect to the manifest generation
at the HAS server. Initially, clients in the multicast scenario
are experiencing additional delay, since new segments and
manifests need some time to be multicasted to the delivery
servers first. This additional delay is equal to the segment
duration (i.e. 10 seconds for Apple HLS) since those clients
are downloading the manifest and segments generated one
segment time earlier. However, when manifests and segments
are already multicasted to the delivery server, clients connected

��

��

��

��

��

��

� �� ��

��
��
���

��
	
�
�	
��

���

��
��
��
�
�
�

��
�

	��
�

�
��

��
�
�
��

�	����
������
����
��������
����������
��
���
������
���

�		

��������

Fig. 2. Comparison of additional delay in both the HTTP and multicast
scenario

Multicast Receiver MemoryMulticast Sender Retr Sender

Packet of Segment

Retr Receiver
History

Wait for data

Request retransmission

Request Retransmission
Retransmit Packet

Retransmitted Packet

Forward Segment Data

Forward Segment Data

MC Receive Error

Fig. 3. Illustration of the retransmission mechanism at the Delivery Server

in the multicast scenario are experiencing lower download
delays, since they are closer to the delivery servers than the
clients connected over HTTP with the HAS server.

B. Handling of packet loss

As part of the data is multicasted over unreliable UDP-
connections, it is crucial to implement resilience measures
to account for packet loss. To address this, a retransmis-
sion mechanism was implemented supporting three different
modes: HTTP fallback, UDP unicast and multicast retransmis-
sions. Multicast retransmissions are requested by the Multicast
Receiver component at the delivery server and served by the
Retransmission Sender, the advantage is of course that each
delivery server will receive the packets that were marked as
lost. The HTTP fallback mechanism is triggered when bursty
packet loss occurs, where it is more beneficial to retransmit the
data over a reliable transport mechanism. Figure 3 illustrates
the handling of packet loss by the multicast retransmission
mechanism.

VI. PERFORMANCE EVALUATION

A. Implementation details

A prototype of the architecture was implemented using the
Apple Live Streaming protocol as an underlying HAS tech-
nique. Since only Apple-based devices are able to playback
this video and the number of available devices was limited, we
implemented our own HAS client, allowing us to accurately
emulate the client behaviour on a large scale. The quality level
selection heuristic used in our prototype is based upon an
existing heuristic called Priority-Based Media Delivery [13]
and decides which quality to download by considering several

HAS
Server

Distribution
Server

Delivery
Servers

Video
Clients

1-10 links 100 links

1 Gbps 1 Gbps

Multicast
Switch

Fig. 4. Emulated network topology

previously downloaded fragments through a weighted moving
average.

In the proposed architecture, caches are used in the Memory
components of both distribution and delivery server. Since
we test our prototype using a Live TV scenario, the cache
replacement strategy best suited is Least Recently Used (LRU).
Since clients play back the video in the same chronological
order manifests and segments are created, LRU leads to the
least possible cache misses.

One-to-many IP multicast, which is often used for streaming
media applications over an IP infrastructure, is used as a multi-
cast protocol. This technique does not require prior knowledge
of the number of receivers, allowing a large number of dynam-
ically connected receivers. Since the bandwidth consumed by
multicast over UDP can be very bursty, it needs to be shaped.
Without shaping, each segment would be multicasted at the
maximum possible line speed, smothering other traffic on that
link. There are two options: shaping the total outgoing rate or
shaping each file separately. In our implementation a hybrid
approach is applied combining both shaping mechanisms into
two levels of token buckets.

B. Experimental setup

The network model illustrated in Figure 4 depicts a typical
tree based access network of 1012 nodes consisting of 1 distri-
bution server, 10 delivery servers and 1000 virtual video clients
(mapped onto 10 physical clients) connected by gigabit links.
The distribution server offers 5 live channels, each available in
six qualities: 8Mbit/s (Full HD), 4Mbit/s (HD Ready), 2Mbit/s
(SD), 900kbit/s (High quality web video), 500kbit/s (Moderate
quality web video), 200kbit/s (Low quality web video). Each
delivery server has a cache size of 500MB, which enables it
to cache enough segments of the live stream so that no entry
discarded by LRU is ever requested again. This is justified
since we mainly focus on the influence of the system on
bandwidth consumption. The distribution of viewers over the
five channels is set according to values measured on a real
network and follows a Zipf distribution with parameter β
equal to 1.7. The distribution of viewers over the different
delivery servers is uniformly random, which implies there are
no significant local popularity differences.

C. Impact of multicasting on consumed bandwidth

Figure 5 shows the impact of the number of delivery servers
and the multicasted channels on the consumed bandwidth
between distribution and delivery servers. The effect of mul-
ticasting all channels and all qualities is a reduced bandwidth
when more than three delivery servers request the video
content. This is because all clients are downloading the highest
quality of the requested channel and the multicasting of the

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10

Av
er

ag
e

Co
ns

um
ed

 B
an

dw
id

th

(M
bi

t/
s)

Number of Delivery Servers

Mcast all Channels All Qualities

Mcast all Channels Best Quality

Mcast Most Popular Channel All Qualities

Mcast Most Popular Channel Best Quality

No Mcast

Fig. 5. Impact on bandwidth of the different multicast strategies

0

50

100

150

200

250

No Multicast 1 Channel Best
Quality

1 Channel All
Qualities

All Channels
Best Quality

All Channels
All Qualities

Multicast

Unicast

Av
er

ag
e

BW
 (M

bi
t/

s)

Fig. 6. Impact on bandwidth of the different multicast strategies

lower quality channels is thus causing unnecessary bandwidth
consumption. In case only the highest quality of all channels is
multicasted, this bandwidth reduction already occurs with only
two delivery servers. When only the most popular channel is
multicasted, with the other channels still being served through
unicast, the bandwidth reduction is obviously less significant.
Figure 6 shows the average used bandwidth for a variety of
multicasting strategies in a network with 10 delivery servers.
Multicasting the best quality of each channel uses 10 times
less bandwidth than when nothing is multicasted. Multicasting
the best quality of 1 channel only results in a 20% bandwidth
reduction.

D. Impact of the retransmission strategy on bandwidth

For this experiment, we introduce the terms multicast loss
and unicast loss, respectively for the loss introduced on the
link between the distribution server and the multicast switch
and on the links between the multicast switch and the de-
livery servers. Multicast loss will cause all delivery servers
to experience the same amount of packet loss, while unicast
loss will affect a specific delivery server. The amount of
loss that is introduced across all experiments is set at 1%.
The consumed bandwidth on the link between distribution
server and multicast switch is displayed in Figure 7. For a
single delivery server, all 4 scenarios are similar, as there
is no difference between introducing loss on both links and
between retransmission strategies. Unicast retransmits and
multicast retransmits for unicast loss show a linear correlation
between the increase in consumed bandwidth and the number
of delivery servers. Multicast retransmits for multicast loss use

0

1

2

3

4

5

0 5 10

DI
S

Re
st

ra
ns

m
it

se
nd

 B
W

 (M
bi

t/
s)

Number of Delivery Servers

uniloss-uniretr
uniloss-multiretr
multiloss-uniretr
multiloss-multiretr

Fig. 7. Impact on bandwidth of the different retransmission strategies on
consumed bandwidth at distribution server

0

1

2

3

4

5

0 5 10

DE
S

Re
tr

an
sm

it
Re

ce
iv

e
BW

 (M
bi

t/
s)

Number of Delivery Servers

uniloss-uniretr
uniloss-multiretr
multiloss-uniretr
multiloss-multiretr

Fig. 8. Impact on bandwidth of the different retransmission strategies on
consumed bandwidth at delivery servers

a constant bandwidth, independent of the number of delivery
servers, as duplicate requests are ignored. The bandwidth used
for receiving retransmissions on the link of the first delivery
server is shown in Figure 8. In this case, multicast retransmits
for unicast loss result in an additional bandwidth use on this
link, as retransmits requested by other delivery servers are
received here as well. These test results show that it would be
beneficial to adapt the retransmission strategy according to the
type of loss, in order to optimise the consumed bandwidth.

VII. CONCLUSION

In this paper, we characterised the merits of a novel HAS-
based multimedia architecture, allowing a decrease of the
consumed bandwidth, through a combination of caching and
multicast streaming. Two additional component types were
added to a traditional HAS-based architecture: a single dis-
tribution and multiple delivery servers. We compared our
novel multicast-enabled architecture with a traditional HAS
set-up, which uses only unicast connections. The experiments
show that the obtained bandwidth reduction factor, when using
multicasting and caching, is proportional to the number of
connected delivery servers, even when multiple HAS qualities
are multicasted. For example, our novel architecture requires 4
times less bandwidth than traditional HAS-based approaches
for a moderate network size consisting of 8 delivery servers;
the larger the network, the bigger the obtained advantage is.

Additionally, redundancy tests showed that the implemented
multicast retransmission mechanism also provides a retrans-
mission bandwidth reduction compared to unicast retransmis-
sion, both for multicast and unicast loss. As such, we have
shown how our multicast-enabled architecture is more scalable
without losing robustness in delivering HAS-based Live TV. In
future work, we plan to improve the autonomic management
algorithm that decides what content to multicast in a Video on
Demand scenario. The goal is to combine segment popularity
statistics with an assessment of the status of each cache to
decide which content to multicast. This will enable the scalable
delivery of HAS-based video for Live TV as well as for Video
on Demand services.

ACKNOWLEDGMENT

Steven Latré is funded by grant of the Fund for Scientific
Research, Flanders (FWO-V).

REFERENCES

[1] “Cisco visual networking index: Forecast and methodology: 2010-2015,”
pp. 1–16, February 2011. [Online]. Available: http://bit.ly/ciscoforecast

[2] Microsoft, “Smooth streaming: The official microsoft iis site,”
http://www.iis.net/download/SmoothStreaming - Last accessed on 1
September, 2011.

[3] R. Pantos and W. May, “HTTP Live Streaming,” 2011. [Online].
Available: http://tools.ietf.org/html/draft-pantos-http-live-streaming-07

[4] Adobe, “Http dynamic streaming: Flexible de-
livery of on-demand and live video streaming,”
http://www.adobe.com/products/httpdynamicstreaming/ - Last accessed
on 1 September, 2011.

[5] H. Schwarz, D. Marpe, and T. Wieg, “Overview of the scalable video
coding extension of the h.264/avc standard,” in IEEE Transactions on
Circuits and Systems for Video Technology In Circuits and Systems for
Video Technology, 2007, pp. 1103–1120.

[6] F. de Ası́s López-Fuentes, “P2p video streaming combining svc and
mdc,” Applied Mathematics and Computer Science, vol. 21, no. 2, pp.
295–306, 2011.

[7] T. Miyoshi and K. Sekiya, “Efficient transfer method for on-demand
video delivery based on streaming packet analysis,” in Computers, Net-
works, Systems and Industrial Engineering (CNSI), 2011 First ACIS/JNU
International Conference on, may 2011, pp. 141–146.

[8] Y.-S. Yu, C.-K. Shieh, C.-H. Lin, and S.-Y. Wang, “P2pvr: A playback
offset aware multicast tree for on-demand video streaming with vcr
functions,” J. Syst. Archit., vol. 57, pp. 392–403, April 2011. [Online].
Available: http://dx.doi.org/10.1016/j.sysarc.2011.03.001

[9] S. Ruepp, H. Wessing, J. Zhang, A. V. Manolova,
A. Rasmussen, L. Dittmann, and M. Berger, “Evaluating
multicast resilience in carrier ethernet,” WSEAS Trans. Cir. and
Sys., vol. 9, pp. 101–110, February 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1852308.1852312

[10] N. Choi, Y. Seok, T. Kwon, and Y. Choi, “Multicasting multimedia
streams in ieee 802.11 networks: a focus on reliability and rate
adaptation,” Wirel. Netw., vol. 17, pp. 119–131, January 2011. [Online].
Available: http://dx.doi.org/10.1007/s11276-010-0268-9

[11] R. Vaishampayan, J. J. Garcia-Luna-Aceves, and K. Obraczka, “An
adaptive redundancy protocol for mesh based multicasting,” Comput.
Commun., vol. 30, pp. 1015–1028, March 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.comcom.2006.08.031

[12] C.-M. Chen, C.-W. Lin, and Y.-C. Chen, “Adaptive error-resilience
transcoding using prioritized intra-refresh for video multicast over wire-
less networks,” Signal Processing: Image Communication, vol. 22, no. 3,
pp. 277 – 297, 2007, special issue on Mobile Video. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0923596506001421

[13] T. Schierl, Y. Sanchez de la Fuente, R. Globisch, C. Hellge,
and T. Wiegand, “Priority-based media delivery using svc with rtp
and http streaming,” Multimedia Tools and Applications, vol. 55,
pp. 227–246, 2011, 10.1007/s11042-010-0572-5. [Online]. Available:
http://dx.doi.org/10.1007/s11042-010-0572-5

