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5" Actuarial and Financial Mathematics Day

PREFACE

The fifth edition of the Contactforum “Actuarial and Financial Mathematics Day” attracted
many participants, both researchers and practitioners. We welcomed this year several
participants from abroad, indicating that this event is becoming to be known internationally.
This contactforum aims to bring together young researchers, in particular Ph.D. students and
Postdocs, working in the field of Financial and Actuarial Mathematics to discuss recent
developments in the theory of mathematical finance and insurance and its application to
current issues faced by the industry and to identify the substantive problems confronting
academic researchers and finance professionals. We provide a forum for the discussion of
advances within this field. In particular, we want to promote the exchange of ideas between
practitioners and academics.

Renowned practitioners were programmed as main speakers in order to give them a forum to
talk about the needs, the problems, the hot topics in their fields. The invited paper about risk
measures is included in these transactions.

We thank all our speakers and discussants (Jasper Anderluh, Katrien Antonio, Griselda
Deelstra, Henrik Jonsson, Nele Vandaele, Maarten Van Wieren, David Vyncke), for their
enthusiasm and their interesting contributions which made this day a great success. We are
also extremely grateful to our sponsors: the Royal Flemish Academy of Belgium for Science
and Arts, and Scientific Research Network “Fundamental Methods and Techniques in
Mathematics” of the Fund for Scientific Research - Flanders. They made it possible to spend
the day in a very agreeable and inspiring environment.

We plan a two day international event for the next meeting in 2008 with the focus on the
interplay between finance and insurance.

Griselda Deelstra
Ann De Schepper
Jan Dhaene
Huguette Reynaerts
Wim Schoutens
Paul Van Goethem
Michele Vanmaele
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CAPITAL ALLOCATION WITH RISK MEASURES

Andreas Tsanakas

Faculty of Actuarial Science and Insurance, Cass Business School, City University, 106 Bunhill
Row, London EC1Y 8TZ, UK.
Email: a. t sanakas. 1@i ty. ac. uk

Abstract

This brief review paper covers the use of risk measures B@ssing economic capital require-
ments and considers the problem of allocating aggregaitatapsub-portfolios.

1. INTRODUCTION

A risk measure is a function that assigns real numbers to random variabl@gsenting uncertain
pay-offs, e.g. insurance losses. The interpretation oflameasure’s outcome depends on the
context in which it is used. Historically there have beere¢hmain areas of application of risk
measures:

e As representations of risk aversion in asset pricing moaeath a leading paradigm the use
of the variance as a risk measure in Markowitz portfolio tiyesee Markowitz (1952).

e As tools for the calculation of the insurance price corresfiog to a risk. Under this in-
terpretation, risk measures are calf@dmium calculation principlesin the classic actuarial
literature, e.g. Goovaerts et al. (1984).

¢ As quantifiers of the economic capital that the holder of aipaar portfolio or risks should
safely investin e.g. Artzner et al. (1999).

This contribution is mainly concerned with the latter imtestation of risk measures.

The economic or risk capital held by a (re)insurer corresponds to the level of safelystee
assets used to protect itself against unexpected vofailitts portfolio’s outcome. One has to
distinguish economic capital from regulatory capital, @his the minimum required economic
capital level as set by the regulator. In fact, much of theatap for the use of risk measures in
the quantification of capital requirements comes from tlea &f regulating financial institutions.

3



4 A. Tsanakas

Banking supervision (Basel Committee on Banking Supewwmisand, increasingly, insurance reg-
ulation (European Commission) have been promoting theldeneent of companiesinternal
models for modelling risk exposures. In that context, the appiaabf a risk measure (most
prominently Value-at-Risk) on the modelled aggregate risk profile of the insurance emyps
required.

Economic capital generally exceeds the minimum set by thelagor. Subject to that con-
straint, economic capital is determined so as to maximis®peance metrics for the insurance
company, such as total shareholder return (Exley and Sr?d6)2 Such maximisation takes into
account two conflicting effects of economic capital (Haricetal. 2001):

e An insurance company’s holding economic capital incurdscty its shareholders, which
can be opportunity or frictional costs.

e Economic capital reduces the probability of default of toenpany as well as the severity
of such default on its policyholders. This enables the iasoe company to obtain a better
rating of its financial strength and thereby attract morerasce business at higher prices.

Calculation of the optimal level of economic capital usingls arguments is quite complicated
and depends on factors that are not always easy to quantdiy, as frictional capital costs, and
on further constraints, such as the ability of an insurammeegany to raise capital in a particular
economic and regulatory environment.

We could however consider that there is a particular caitmaof the (regulatory or other)
risk measure, which gives for the insurance company’s exjeos level of economic capital that
coincides with that actually held by the company. In thatseensk measures can be used to
interpret exogenously given economic capital amountsh8uerpretation can be in the context of
capital being set to achieve a target rating, often asstiaith a particular probability of default.
Discussion of economic capital in the context of risk measwghould therefore be caveated as
beingex-post.

Finally, we note that the level of economic capital caloedaby a risk measure may be a
notional amount, as the company will generally not invesitalsurplus in risk-free assets. This
can be dealt with by absorbing the volatility of asset resumthe risk capital calculation itself.

2. DEFINITION AND EXAMPLES OF RISK MEASURES

We consider a set of risk¥ that the insurance company can be exposed to. The eleteats’

are random variables, representing losses at a fixed timeomdf. If under a particular state of
the worldw the variableX (w) > 0 we will consider this to be a loss, while negative outcomes
will be considered as gains. For convenience it is assunredghout that the return from risk-
free investment is 1 or alternatively that all lossegtirare discounted at the risk-free rate. A risk
measure is then defined as a functional

p: X —R. (2)
If X corresponds to the aggregate net risk exposure of an insicampany (i.e. the difference

between liabilities and assets, excluding economic dy@itad economic capital corresponds to
p(X), then we assume that the company defaults wkien p(X).
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In the terminology of Artzner et al. (1999) (and subject tommgssimplification), a risky position
X is called acceptable j§(X) < 0, implying that some capital may be released without endan-
gering the security of the holder &f, while p(X) > 0 means thaiX is a non-acceptable position
and that some capital has to be added to it.

Some examples of simple risk measures proposed in the edtaad financial literature (e.g.
Buhlmann (1970), Denuit et al. (2005)) are as follows.

Example 1 (Expected value principle)
p(X) = AE[X], A > 1. 2

Besides its application in insurance pricing, where it @spnts a proportional loading, this risk
measure in essence underlies simple regulatory minimunirezgents, such as the current EU
Solvency rules, which determine capital as a proportiomafgosure measure such as premium.

Example 2 (Standard deviation principle)
p(X) = E[X] + ro[X), k> 0. @3)

In this case the loading is risk-sensitive, as it is a praporof the standard deviation. This risk
measure is encountered in reinsurance pricing, while a&llsdimg to Markowitz portfolio theory.
In the context of economic capital, it is usually derived aspproximation to other risk measures,
with this approximation being accurate for the special cdseultivariate normal (more generally
elliptical) distributions (Embrechts et al. 2002).

Example 3 (Exponential Premium Principle)

p(X) = %mE[e“X], a>0. (4)

The exponential premium principle is a very popular risk suga in the actuarial literature, e.g.
Gerber (1974). Part of the popularity stems from the fadt thahe classic ruin problem, it gives

the required level of premium associated with Kramer-Lwerdlbbounds for ruin probabilities. We

note that this risk measure has been recently considerdxifitance literature under the name
‘entropic risk measure’ (Follmer and Schied 2002b).

Example 4 (Value-at-Risk)
p(X) = VaR,(X) = Fy'(p), p € (0,1), (5)

whereFy is the cumulative probability distribution of andFy! is its (pseudo-)inverse. VaRX )

is easily interpreted as the amount of capital that, wherada the riskX, limits the probability
of default tol — p. Partly because of its intuitive attractiveness Valu®ek has become the
risk measure of choice for both banking and insurance réggla For example, the UK regu-
latory regime for insurers uses VaRs;(X) (Financial Services Authority), while a similar risk
measure has been be proposed in the context of the new EUSwmidency Il regime (European
Commission).
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Example 5 (Expected Shortfall)

p() = ES,(X) = | F(a)da, pe 0.1). (6)

This risk measure, also known as Tail-(or Conditional-)aht-Risk, corresponds to the average
of all VaR,s above the threshold Hence it reflects both the probability and the severity of a
potential default. Expected shortfall has been propos#tkifiterature as a risk measure correcting
some of the theoretical weaknesses of Value-at-Risk (VénchHardy 1999). Subject to continuity
of Fx at the threshold VaR Expected Shortfall coincides with tiail Conditional Expectation,
defined by

p(X) = E[X|X > F¢'(p)]. ()

Example 6 (Distortion risk measure)

0 00
o)== [ (1=gll=Fx@)do+ [ o1 = Fxa)ds, ®
whereg : [0, 1] — [0, 1] is increasing and concave (Wang 1996). This risk measurbearewed
as an expectation under a distortion of the probabilityritlistion effected by the functioq. It can
be easily shown that Expected Shortfall is a special casaradat by a bilinear distortion (Wirch
and Hardy 1999). Distortion risk measures can be viewed ag @it integrals (Denneberg (1990),
Denneberg (1994)), which are extensively used in the ecarsoai uncertainty, e.g. Schmeidler
(2003). An equivalent class of risk measures defined in tlam&e literature are known ggectral
risk measures (Acerbi 2002).

Example 7 (Distortion-exponential risk measure)

p(X) = - Inlp. (V)] ©

wherep, is a distortion risk measure. This risk measure was propioseshnakas and Desli (2003)
and it combines the properties of the exponential premiunciple with those of distortion risk
measures.

3. PROPERTIES OF RISK MEASURES

The literature is rich in discussions of the properties téralative risk measures, as well as the
desirability of such properties, e.g. Goovaerts et al. §)98rtzner et al. (1999), Goovaerts et al.
(2003), Denuit et al. (2005). In view of this, the currentadission is invariably selective.

An often required property of risk measures is thatohotonicity, stating

If X <Y, thenp(X) < p(Y). (10)

This reflects the obvious requirement that losses that eu@yalhigher should also attract a higher
capital requirement.
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A further appealing property is that tfanslation or cash invariance,
p(X +a)=p(X)+a,foraeR. (11)

This postulates that adding a constant loss amount to eofioriticreases the required risk capital
by the same amount. We note that this has the implication that

p(X = p(X)) = p(X) — p(X) =0, (12)

which, in conjunction with monotonicity, facilitates thetérpretation ofp(X) as the minimum
capital amount that has to be addedXion order to make it acceptable.
Two conceptually linked properties are the onepastive homogeneity,

p(bX) = bp(X), forb > 0, (13)

andsubadditivity,
p(X +Y) < p(X)+p(Y), forall X,Y € X. (14)

Positive homogeneity postulates that a linear increaskanisk exposureX also implies linear
increase in risk. Subadditivity requires that the mergihigsis should always yield a reduction in
rick capital due to diversification.

Risk measures satisfying the four properties of monotopitianslation invariance, positive
homogeneity and subadditivity have become widely knowecohsrent (Artzner et al. 1999). This
particular axiomatization, also proposed in an actuawatext (Denneberg (1990), Wang et al.
(1997)), has achieved near-canonical status in the worliihahcial risk management. While
Value-at-Risk generally fails the subadditivity propeduye to its disregard for the extreme tails of
distributions, part of its appeal to regulators and prewxtérs stems of its use as an approximation
to a coherent risk measure.

Nonetheless, coherent risk measures have also attradiesier because of their insensitivity
to the aggregation of large positively dependent risks ieapby the latter two properties, e.g.
Goovaerts et al. (2003). The weaker propertycofivexity has been proposed in the literature
(Follmer and Schied 2002a), a property already discussBéprez and Gerber (1985). Convexity
requires that:

pAX + (1= NY) < Ap(X) + (1= A)p(Y), forall X,Y € X andA € [0,1].  (15)

Convexity, while retaining the diversification propertglaxes the requirement that a risk measure
must be insensitive to aggregation of large risks. It is ddteat subadditivity is obtained by
combining convexity with positive homogeneity. Risk measusatisfying convexity and applying
increasing penalties for large risks have been proposedandkas and Desli (2003).

Risk measures produce an ordering of risks, in the senseoth@t < p(Y’) means thatX
is considered less risky than. One would wish that ordering to conform to standard ecogomi
theory, i.e. to be consistent with widely accepted notiohstachastic order such as 1st and 2nd
order stochastic dominance and convex order, see MulteGamyan (2002), Denuit et al. (2005).
It has been shown that under some relatively mild technioabitions, risk measures that are
monotonic and convex produce such a consistent orderingksf (Bauerle and Muller 2006).
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A further key property relates to the dependence structetwden risks under which the risk
measure becomeslditive
p(X +Y) = p(X) + p(Y), (16)

as this implies a situation where neither diversificatioeddis nor aggregation penalties are as-
signed. In the context of subadditive risk measucesyonotonic additivity is a sensible require-
ment, as it postulates that no diversification is appliedherdase of comonotonicity (the maximal
level of dependence between risks, e.g. Dhaene et al. (R@AYhe other hand, one could require
a risk measure to bedependent additive. If such a risk measure is also consistent with the stop-
loss or convex order, by the results of Dhaene and Goova86], it is guaranteed to penalize
any positive dependence by being superadditive {{(.&. + Y) > p(X) + p(Y')) and reward any
negative dependence by being subadditive.

The risk measures defined above satisfy the following ptagser

Expected value principle Monotonic, positive homogenous, additive for all depermdestruc-
tures.

Standard deviation principle Translation invariant, positive homogenous, subadditive
Exponential premium principle Monotonic, translation invariant, convex, independeritae.

Value-at-Risk Monotonic, translation invariant, positive homogenouasiditive for joint-ellip-
tically distributed risks (Embrechts et al. 2002), comamit additive.

Expected Shortfall Monotonic, translation invariant, positive homogenoubgalditive, comono-
tonic additive.

Distortion risk measure Monotonic, translation invariant, positive homogenoukaiditive, co-
monotonic additive.

Distortion-exponential risk measure Monotonic, translation invariant, convex.

Finally we note that all risk measures discussed in thisrdmrtton arelaw invariant, meaning
that p(X) only depends on the distribution function &f (Wang et al. (1997), Kusuoka (2001)).
This implies that two risks characterised by the same pritibabistribution would be allocated
the same amount of economic capital.

4. CONSTRUCTIONS AND REPRESENTATIONS OF RISK MEASURES

4.1. Indifference arguments

Economic theories of choice under risk seek to model theepeates of economic agents with re-
spect to uncertain pay-offs. They generally have reprasiens in terms opreference functionals
V. —X — R, in the sense that

—X ispreferredto—Y < V(-X)>V(-Y). (17)
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(Note that the minus sign is applied because we have defiskdas losses, while preference
functionals are typically applied on pay-offs.)

Then a risk measure can be defined by assuming that the adtbtimitial wealth1V of a
liability X and the corresponding capital amowtfX') does not affect preferences (Bilhimann
1970)

V(Wo = X + p(X)) =V (Wo). (18)

Often in this contexi?, = 0 is assumed for simplicity.
The leading paradigm of choice under risk is the von Neumdorgensterrexpected utility
theory (Von Neumann and Morgenstern 1944), under which

V(W) = E[u(W)], (19)

wherew is an increasing and concauglity function. A popular choice of utility function is the
exponential utility

u(w) = % (1—e), a>0. (20)

It can be easily seen that equations (18), (19) and (20) yieldexponential premium principle
defined in section 2.
An alternative theory is thdual theory of choice under risk (Yaari 1987), under which

0 o0
V(W)= —/ (1—=h(1 - Fy(w)))dw +/ h(1 — Fy(w))dw, (21)
oo 0
whereh : [0,1] — [0, 1] is increasing and convex. It can then be shown that the risksore
obtained from (18) and (21) is a distortion risk measure witf) = 1 — h(1 — s). For the function

h(s)zl—(l—s)%,7>1 (22)

the well knownproportional hazards transformwith g(s) = 57 is obtained (Wang 1996).

More detailed discussions of risk measures resulting frivenreative theories of choice under
risk and references to the associated economics literatargiven in Tsanakas and Desli (2003),
Denuit et al. (2006).

It should also be noted that the construction of risk measinoen economic theories of choice
must not necessarily be via indifference arguments. Iflamgasure satisfies the convexity and
monotonicity properties, then by settingl’) = —p(—1) we obtain a monotonic concave pref-
erence functional. The translation invariance propertyhef risk measure then makés also
translation invariant. Hence we could consider convex nsdasures as the subset of concave
preference functionals that satisfy the translation ilarare property (subject to a minus sign).
Such preference functionals are sometimes cafleaktary utility functions, as their output can be
interpreted as being in units of money rather than of an abistiotion of satisfaction.

4.2. Axiomatic characterisations

An alternative approach to deriving risk measures is by gxarset of properties that risk measures
should satisfy and then seeking an explicit functionalespntation.
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For example, coherent (i.e. monotonic, translation irargripositive homogenous and subad-
ditive) risk measures can be represented by (Artzner eab)L

p(X) = sup Ep[X], (23)

PeP

whereP is a set of probability measures. By adding the comonotahdlitizity property one gets
the more specific structure @ = {P : P(A) < v(A) for all setsA}, wherev is a submodular
set function known as a (Choquet) capacity (Denneberg 1994% additional property of law
invariance enables writing(A) = g(Po(A)) whereP, is the objective probability measure and
a concave distortion function (Wang et al. 1997). This finglelds a representation of coherent,
comonotonic additive, law invariant risk measures as disiorisk measures. An alternative route
towards this representation is given by Kusuoka (2001).

The probability measures iR have been termegeneralized scenarios (Artzner et al. 1999)
with respect to which the worst case expected loss is corezid©n the other hand, representations
such as (23) have been derived in the context of robusttstat{sluber 1981) and decision theory,
known as the multiple-priors model (Gilboa and Schmeidg&89).

A related representation result for convex risk measuregeis/ed in Follmer and Schied
(2002a), while results for independent additive risk measare given in Gerber and Goovaerts
(1981), Goovaerts et al. (2004).

4.3. Re-weighting probabilities

An intuitive construction of risk measures is by re-weigitithe probability distribution of the
underlying risk

p(X) = E[X((X)], (24)
where( is generally assumed to be an increasing function \liifY X' )] = 1 and representation
(24) could be viewed as an expectation under a change of med®epresentation (24) is particu-

larly convenient when risk measures and related functeohave to be evaluated by Monte-Carlo
simulation.

Many well-known risk measures can be obtained in this wayekample, making appropriate
assumptions o’y andg one can easily show that for distortion measures it is
p(X) = E[Xg'(1 - Fx(X))]. (25)

On the other hand the exponential principle can be written as

1 efan
p(X) =F [XA Wd’}/} . (26)

The latter representation is sometimes called a ‘mixtuiessicher principles’ and studied in more
generality in Gerber and Goovaerts (1981), Goovaerts €@04).
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5. CAPITAL ALLOCATION

5.1. Problem definition

Often the requirement arises that the risk capital caledl&r an insurance portfolio has to be
allocated to business units. There may be several reasosisdio a capital allocation exercise, the
main ones being performance measurement / managementsamdrine pricing.

Capital allocation is not a trivial exercise, given that angral the risk measure used to set the
aggregate capital is not additive. In other words, if onedrasggregate risk for the insurance
company, breaking down to sub-portfolids, . . ., X,,, such that

Z=3 X (27)
j=1
it generally is
p(Z) # > p(X;), (28)
j=1
due to diversification / aggregation issues.
The capital allocation problem then consists of finding tamisd;, . . ., d,, such that
> dy=p(2), (29)
j=1

where the allocated capital amoufitshould in some way reflect the risk of sub-portfoliq.
Early papers in the actuarial literature that deal with akication problems in insurance are
Buhlmann (1996) and Lemaire (1984), the former taking k tioretical view, while the later
examining alternative allocation methods from the perSpeof cooperative game theory. A
specific application of cooperative game theory to risk tzjilocation, including a survey of the
relevant literature, is Denault (2001).

5.2. Marginal cost approaches
Marginal cost approaches associate allocated capitaktorthact that changes in the exposure to
sub-portfolios have on the aggregate capital. Denote faiovef weightsw € [0, 1],

Zw = ijXj. (30)
j=1

Then the marginal cost of each sub-portfolio is given by

Ip(ZY)
8wi

MC(X;; Z) =

, (31)

w=1



12 A. Tsanakas

subject to appropriate differentiability assumptionsthi risk measure is positive homogeneous,
then by Euler’s theorem we have that

>_MC(X;; Z) = p(2) (32)

and we can hence use marginal costs diretthr MC(X;; Z) as the capital allocation.
If the risk measure is in addition subadditive then we haa¢ tAubin 1981):

di = MC(X;; Z) < p(Xy), (33)

i.e. the allocated capital amount is always lower than tlaadsalone risk capital of the sub-
portfolio. This corresponds to the game theoretical conoéphe core, in that the allocation
does not provide an incentive for splitting the aggregatéfpleo. This requirement is consistent
with the subadditivity property, which postulates thatréhis always a benefit in pooling risks.

In the case that no such strong assumptions as positive heraitg (and subadditivity) are
made with respect to the risk measure, marginal costs wijeneral not yield an appropriate
allocation, as they will not add up to the aggregate risk. f@oative game theory then provides an
alternative allocation method, based on gugnann-Shapley value (Aumann and Shapley 1974),
which can be viewed as a generalisation of marginal costs

AC(X;,Z) = /1 MC(X;;vZ)dr. (34)
0

It can easily be seen that if we sét = AC(X;, Z) then thed;s add up top(Z) and that for
positive homogenous risk measures the Aumann-Shaplega#itbm reduces to marginal costs.
Early applications of the Aumann-Shapley value to costcaliion problems are Billera and Heath
(1982), Mirman and Tauman (2006).

For the examples of risk measures that were introduced trosez, the following allocations
are obtained from marginal costs / Aumann-Shapley.

Example 8 (Expected value principle)
d; = A\E[X]] (35)

Example 9 (Standard deviation principle)

B Cov(X;, Z)

d; = E[Xi] + Kk 17 (36)

Example 10 (Exponential Premium Principle)

' B[X; exp(yaZ))
d; = d 37
/0 Elexp(1aZ)] 57
Example 11 (Value-at-Risk (Tasche 2004))

di = E[X;|Z = VaR,(Z)] (38)

under suitable assumptions on the joint probability distiibn of (X, Z).
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Example 12 (Expected Shortfall (Tasche 2004))
di = E[Xi|Z > VaR,(Z)], (39)
under suitable assumptions on the joint probability distiibn of (X, Z).

Example 13 (Distortion risk measure (Tsanakas 2004))
di = E[Xig'(1 = Fz(2))] (40)
assuming representation (25) is valid.

Example 14 (Distortion-exponential Risk Measures)

o VE[X;exp(yaZ)g' (1 — Fz(2))]
= | “Hitarifa e @

5.3. Alternative approaches

While marginal cost-based approaches are well-establishthe literature, there are a number of
alternative approaches to capital allocation. For exanwmenote that marginal costs generally de-
pend on the joint distribution of the individual sub-pofitboand the aggregate risk. In some cases
this dependence may not be desirable, for example when iesadrmeasure the performance of
sub-portfolios to allocate bonuses. In that case, a siprpjaortional repartition of costs (Lemaire
1984) may be appropriate:
p(Z)
h=pXs Uy (42)

Different issues emerge when the capital allocation is todsel for managing the performance
of the aggregate portfolio, as measured by a particularicngiich as return-on-capital. Assume
thatX;, i = 1,...,n correspond to the liabilities from sub-portfolioninus reserves correspond-
ing to those liabilities, such thdt[X;] = 0. We then have the breakdown

X; = Xz — Di, (43)

wherep; corresponds to the underwriting profit from the insurers-portfolio (e.g. line of busi-
ness)i, such thatZ?:1 X, = Z and Z?lej = p. Then we define the return on capital for the

whole insurance portfolio by

RoC= 2 (44)

p(Z)

This is discussed in depth in Tasche (2004) for the caseptisad coherent risk measure. It is then
considered whether assessing the performance of suleiastby

RoC, = 1. (45)
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whered; represents capital allocated 6, provides the right incentives for optimizing perfor-
mance. It is shown that marginal costs is the unique allonatiechanism that satisfies this re-
quirement as set out in that paper. A closely related arguimémat under the marginal cost alloca-
tion a portfolio balanced to optimize aggregate return gntabhas the property that Ro€ RoG,

for all .. While this produces a useful performance yardstick thatmaused throughout the com-
pany, some care has to be taken when applying marginal caebdwogies. In particular, if the
marginal capital allocation to a sub-portfolio is small.éay reasons of diversification, the insurer
should be careful not to let that fact undermine underwgistandards. A proportional allocation
method could also be used for reference, to avoid that danger

Often one may be interested in calculating capital allecetithat are in some sense optimal.
For example, in Dhaene et al. (2005) capital allocationsaleulated such that a suitably defined
distance function between individual sub-portfolios ahocated capital levels is minimized. This
methodology reproduces many capital allocation methodsdan the literature, while also con-
sidering the case that aggregate economic capital is ewogngiven rather than calculated via
a risk measure. A different optimization approach to cépilacation is presented in Laeven and
Goovaerts (2003).

An alternative strand of the literature on capital allogatielates to the pricing of the policy-
holder deficit (also known as the ‘limited liability put opti’), due to the insurer’s potential default
(Myers and Read 2001) and considers the marginal impactopicstfolios on the market price of
the deficit.
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Abstract

Monte Carlo simulation is currently the method of choicetfar pricing of callable derivatives
in LIBOR market models. Lately more and more papers are agan which variance re-
duction methods are applied to the pricing of derivativethwarly exercise features. We focus
on one of the conceptually easiest variance reduction rdsthaontrol variates. The basis of
our method is an upper bound of the callable contract in tefrptin vanilla contracts, which
is found to be a highly effective control variate. Severareples of callable LIBOR exotics
demonstrate the effectiveness and wide applicability efrtiethod.

1. INTRODUCTION

Ever since the seminal papers of Carriere (1996), Tsissdtd Roy (2001) and Longstaff and
Schwartz (2001) regression methods have become incréapimgular for the valuation and risk
management of derivatives with early exercise featuregalticular, for high-dimensional non-
Markovian models such as the LIBOR market model (LMM), theagstaff-Schwartz algorithm
as it has become known is the method of choice. Though Morme @ethods are often criticised
for having slow convergence, one distinct advantage ovgcdéabased methods is that one can
appeal to a vast array of probabilistic methods in orderdoce the variance of the estimate of the
option price.

Since the introduction of Monte Carlo based methods in nma#ttieal finance, variance re-
duction techniques, see e.g. Jackel (2002) and Glass€@@@a8) for an extensive overview, have
become commonplace when it comes to the valuation of Euroged path-dependent contracts.
It is only recently however that papers have surfaced in wilhese techniques are applied to

!Large parts of this research were carried out while the finh@ was writing his Master’s thesis at the Delft
University of Technology and the Modelling and Researchatiepent of Rabobank International, and the second
author was employed by the latter department and the Tiebdrgstitute at the Erasmus University Rotterdam. We
thank seminar participants at Rabobank Internationallaméth Actuarial and Financial Mathematics Day in Brussels.
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the valuation of Bermudan derivatives. Bolia et al. (200dY &ietersz and Van Regenmortel
(2006) consider importance sampling, whereas Piterbd@94(2 Rasmussen (2005), Jensen and
Svenstrup (2005), Bolia and Juneja (2005) and EhrlichmanHenderson (2006) have opted for
control variates.

From the numerical examples in these studies it seems thatotwariates allow for larger
orders of magnitude of variance reduction, though specayofis such as TARNs are well suited
for importance sampling, see Pietersz and Van Regenm@Q66b). Piterbarg (2004) was among
the first to suggest using control variates for the valuatiddermudan derivatives in the LMM. By
constructing an analytically tractable Markovian appnoeaiion to the LMM it should be possible
to value the Bermudan payoff in a lattice and use this as aa@lordriate. This has the advantage
that the approach is virtually payoff-independent, theyaask left is to construct an approximate
model that is highly correlated with the original model.

Other attempts to use control variates have mainly beestedgt using control variates within
the original model. Within these papers we can recognisedifierent types of approaches. On
the one hand, Rasmussen (2005) and Jensen and Svenstrp (20@ opted for using plain
vanilla options as control variates, whereas both Bolia &unkja (2005) and Ehrlichman and
Henderson (2006) try to approximate that martingale thatlees the additive upper bound of
Rogers (2002), Haugh and Kogan (2004) and Andersen and Br¢2@04) equal to the true
value of the Bermudan option. Our approach builds on an ghsen by Jensen and Svenstrup
(2005), who noticed that one of the most effective contralatas for a Bermudan swaption is
simply a cap. First and foremost we aim to provide an intaigxplanation for the effectivity of
such simple control variates, and to investigate how theybmaimproved upon. Second, of the
above papers only Jensen and Svenstrup have applied caeatiatkes to the pricing of Bermudan
interest rate derivatives, and have only considered thestaaxample — the Bermudan swaption.
The method we consider will be applicable to all kinds ofalalé LIBOR exotics (CLES), a term
coined by Piterbarg (2004).

This paper is structured as follows. Section 2 introducesesterminology and describes the
LMM and CLEs we consider later on. Section 3 reproduces thelt®that have been reported
by Jensen and Svenstrup and analyses why an upper bound GhEhe a very effective control
variate. Section 4 describes how we can easily construcpperibound for most CLEs and gives
two specific examples of this for a callable inverse floater @asnowball. Possible improvements
of this idea are also discussed. Finally, section 5 dematestthe effectiveness of our method and
concludes.

2. LIBOR MARKET MODEL AND CALLABLE LIBOR EXOTICS

We start by introducing a tenor structufe= {7; : i = 0, ..., N + 1} with daycount fractions over
the interval[T;, T;.4] given by«;. Next, define the forward LIBOR rate over this time interval a

Li(t) = ai <% - 1)

whereP (¢, T;) denotes the timeprice of a zero-coupon bond maturing/at We use the conven-
tion that theith LIBOR sets afl; and is paid af/;, ;. Our numerical results have been generated
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in the lognormal LIBOR market model in the spot-LIBOR measufhe dynamics of;(t) for
0 <t < T in this setup are given by:

ALi(E) = ps(t, L) La(t)dt + o:(6) L (£)dWi(t) 1)
WO L0) = o) Y T 00
j=m(t) I

AW(O)AW, (1) = pydt

whereo; is the volatility of L;, p;; is the instantaneous correlation betwdgnand L; and W,
throughWy are independent Brownian motions. Finally(t) = {k | Tx—1 <t < T}}. In the
spot-LIBOR measure the discrete analogue of the money mackeunt is the numeraire asset:

P (t, Tn)
(D) :
szl P (T, 1)

We use the drift approximation of Hunter et al. (2001) to appnate the drift in (1).

Within this model we will be concerned with the valuation aflable or cancellable LIBOR
exotics (CLEs). Let us first consider a structured swap, wlara subsét7,,, of 7" one ex-
changes structured coupon payments with floating payméngsarticular, for a payérswap the
net cashflow payment &t is:

B(t) =

The holder of a receiver swap obviously receives the oppgmlyments. In our examples the
floating rateF; will be the LIBOR L;(T;), though in principle this could be any rate which is
known at the payment daf&_ ;. The most common example for the coupdns C; = K, which
amounts to a plain vanilla swap. Other examples we will useaarinverse floater coupon:

CZ’ = min (maX (K_LZ(E)7f)7C)7 (3)
wheref indicates a floor andindicates a cap, and a snowball coupon:
C; = min (max (C;_1 + K — Li(T}), f) ,¢) . 4)

The snowball coupon is similar to the inverse floater, thieetehce being its path-dependency. In
all examples we set= cc.

A callable version of this swap, or a callable LIBOR exoti,a Bermudan option to enter
into the structured swap at a prespecified set of exercigsday;, C 7. Similarly, a cancellable
LIBOR exotic gives the right to cancel the swap at a certatro$elates. A parity relationship
between callable and cancellable swaps is:

Callable payer swap = Cancellable receiver swap + payer.swap (5)

When considering options we assume the option holder hasgtieto call or cancel. If however
the option seller has the right to call or cancel, the valubémption holder is exactly the opposite
of the value to the option seller. Valuing cancellable opgids therefore as easy or difficult as
valuing callable options. In the remainder of the paper weths Longstaff-Schwartz algorithm,
see Longstaff and Schwartz (2001), to value the CLEs.

2In full generality both legs of the swap can have a differeatjfiency and daycount conventions. For ease of
exposure we neglect this here.
3Analogous to vanilla swaps, a payer swap indicates that epaying the structured coupon.
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3. PRELIMINARY RESULTS

The value of a callable payer swap, where the holder of the $,iaa the right to call, can be written
as an optimal stopping problem:

T

Q; (E - Oi)
Z B(Ti11)

=0

Callable swap(0) = sup B(0)E,

TE€Tcall

(6)

Adding a control variate to (6) which is also evaluated atagpgmal stopping time yields:

Callable swap(0) = sup B(0)E,

TE€Tcall

S AT (X (1)~ o [X<T)]>] (7

whereX () represents a vector of timaneasurable products whose analytical expectation can be
evaluated relatively easily. The optional sampling theostates that the value of (7) is the same
as that of (6). In principle we could evaluate the controliatar at any other time. Rasmussen
(2005) has shown however that it is never optimal to samm@ectimtrol variate after the optimal
exercise date. Though it is not easy to prove that it is nepmal to sample prior to this date, it
seems reasonable that the optimal stopping time is alsopt@a sampling time of the control
variate, as we want the control variates to contain the safoenation as the payoff. It can be
shown that if:

B = var (X (7))~ cov < %Jfﬁ))

the variance of (7) is minimised. We will estimate the vacand covariances in this equation by
the sample (co)variances in the same simulation. The bigsninoduces can be expected to be
negligible, see Jackel (2002).

In this section we will reproduce the results from Jensen@rehstrup, who found that a cap
is a highly effective control variate for a Bermudan swaptid/e will try to explain why this is the
case. The parameters and settings we use are the ones useddsr Bt al. (2005). Tenor dates
are chosen ag; = 0.5,7 = 0,...,12 (= N + 1). Daycount fractions are assumed to be constant
and equal td.5. The volatility functions are time-homogeneous and gdedrdy Rebonato’s
abcd-formula:

oi(t) = @; ([a(T; —t) +d e "7 4 ¢). (8)

Instantaneous correlations between forward LIBORs anenaed to be:

J —1
Pij eXp<N_2np )
for 2 < i,7 < N. Values of the parameters in (8) and (9), as well as the irfdiavard LIBORS
are supplied in Table 1. The initial forward term structwsaipward sloping, which more often
than not seems to be the case in interest rate markets.
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i | o] 1| 2] 3| 4|5 ]| 6] 7| 8] 9 ]10]|1n
Li(0) [2.3%| 25%] 2.7% | 2.7% | 3.1%| 3.1%| 3.3% | 3.4% 3.6%| 3.6% | 3.6% | 3.8%
®;, | — |15.3% 14.39%4 14.09% 14.0% 13.99% 13.8% 13.79% 13.6% 13.5% 13.4% 13.2%

o« | b | e | d | pu|
0.976] 2.00| 1.500| 0.500 | 0.663

Table 1: Intital forward LIBORs, volatility and correlatigparameters

The chosen example in this section i§7@ no-call 7; Bermudan swaption, which allows us
to enter into a swap maturing @i, at datesl; throughTi;. In the notation of (2) this implies
that the floating raté’; = L;(T;) andC; = K. We will look at an at-the-money (ATM) example,
an in-the-money (ITM) and an out-of-the-money (OTM) exampiThe fixed rated{ of these
Bermudan swaptions as well as their values are suppliedbteTa The values in Table 2 have
been generated with 100000 paths. The regressions in thgstaiiiSchwartz algorithm were
precomputed in 50 000 independent paths.

Payer Receiver
K Value Se K Value Se
OTM | 2.22% 100.6 0.57 4.22% 15.64 0.1
ATM | 3.22% 224.2 0.77 3.22% 139.3 0.4
ITM | 4.22% 514.1 0.76 2.22% 508.0 0.6

Table 2: Bermudan swaption values and standard errors fin bp

Let us define the variance reduction ratioby= se?/se?,,. Variance reduction is obviously
not all we are interested in — if we have found a way to redueeviriance of our price estimate
by a factor of 2, but the Monte Carlo simulation including tmatrol variates takes twice as long
as the original simulation, the method is not very useful. tdke into account the increase in
computational time by using the following quantity:

se? T

0:

2 :
sesy  Tov

The scaling by the ratio af to 7/, the times required for the simulation without and with coht
variates, accounts for the fact that the computational tegeired and the inverse of the variance
of the price estimate scale roughly linearly with the numifgpaths. Hence, when e.¢.= 2 we

can obtain the same standard error with control variateslirtie time compared to the situation
without control variates. In practice we noted that the addal time required to value the control
variates within the simulation is minor compared to theltstaulation time. The reason for this

is that the lion’s share of computation time is spent in thestaction of the paths. One final note
must be made on the computationfothere we have neglected the cost of estimating the exercise
decision in a separate independent simulation.
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Figure 1:x andé for several control variates
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Figure 2:6 for several control variates in OTM/ATM/ITM payer (A) andceaver (B) Bermudan
swaption

In Figure 1 we have depicted the variance reduction fagtand 6, which corrects for the
additional computational time that is required, when usiengeral plain vanilla products as control
variates for the ATM Bermudan payer swaption from Table 2e $tvaptions in Figure 1 are the
European swaptioAsvhich are embedded in the Bermudan. The reason why onlyjtisgvaption
is included is that this was found to be the best-performinggean swaption.

Even though using a swap or a European swaption shows sattifimprovements (up to
a 6 of 15 for the best-performing European swaption), thesglsinontrol variates are by far
outperformed by the cap. The correlation between the capgln8ermudan is 0.998, i.e. they
are almost perfectly correlated. As Jensen and Svenstregdsl noted, using a cap alone leads
to a higher variance reduction than the best linear comioimatf all European swaptions which
are embedded in the Bermudan swaption. Lifting the regiriain the weights of the caplets (i.e.
using a vector of caplets instead of a cap as control vardgdey not give large improvements
— when investigating the optimal weights of each caplet weedidhey were quite close to 1,
indicating that the cap is close to optimal. Adding a swah&dap seems to give the best results,
with a 30% improvement compared to the cap alone.

Figure 2 finally shows for all options from 2, when a cap — or a floor for the receiver
Bermudan — is used as the control variate. As expected, thhe M the option is, the higher

4Theoretically speaking the exact price of a European swajiginot known in closed-form in the LMM. Several
highly accurate approximations do exist however, so thebths induced hereby is negligible.
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0 will be as the payoff of the cap or floor will be very highly celated with the payoff of the
underlying swap once we have decided to enter into it. Thenmade ofd is clearly smaller for
the receiver Bermudan. What is causing this is actually #meesthing that is allowing the cap to
work so well: the upward sloping term structure.

The reason why the cap works so well is the following. Once axeehdecided to enter into
the swap, the payments from the swap exactly match the pagméthe cap, provided that the
floating payment is higher than the fixed. On the optimal @germoment this is clearly the case.
The upward sloping term structure ensures that, on avetiagéture net exchanges of the payer
swap will be positive, so that the value of the cap and the smithpe highly correlated. The initial
payments of the cap that occur prior to the exercise datdawir the correlation. However, the
contribution of these payments to the cap will most likelyltn®, as otherwise it is likely that it
would have been optimal to exercise into the swap at an ealdiee. For the receiver swaption
the upward sloping term structure works in exactly the ofiposay. After we have decided to
exercise, the net value of future payments is expected tovierithan the first payment exchange.
As a consequence the probability of negative cash flows ases leading to a lower correlation
of the floor and the structured swap we have exercised into.

Upon inspecting Figure 1 it may seem counterintuitive thatdap works so much better than
a single or all embedded European swaptions. A partial egpian for this is that in the extremes
(high or low interest rates), the cap perfectly mimics thegleof the Bermudan swaption. Only
the European swaption which has the same start date as theu8an shares this property with
the cap. An affine combination of control variates will notisig this property, which explains
what we see in Figure 1.

Even though the swap rate is the main driver behind the eseeecision, a control variate
that mimics the payoff of the Bermudan swaption in the exgemill be a highly effective control
variate. We further explore this idea for more general CliEihe next section.

4. EFFECTIVE CONTROL VARIATESFOR CLES

Supported by the results from the previous section, thissewill initially focus on generalising
the method from the previous section to more general paybif§ection 4.2 we try to improve
upon this methodology.

4.1. Mimicking the cap

In Section 3 we noted that the cap was a very effective conanate for the Bermudan payer
swaption. Observe that the cap is constructed from the iyidgrswap by taking each forward
rate agreement (FRA) and flooring it at zero. This approactasly extended to other CLEs.
The only condition that the payoff has to satisfy is that eff@bred swaplet can be valued, or at
least approximated, in closed-form. We will apply this aggwh to the two CLEs we presented
in Section 2, the inverse floater and the snowball. In the nedea of this text we will refer to a
floored swaplet as a “caplet”, and to the sum of all floored $gta@s a “cap”.
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Flooring the payoff of the payer inverse floater (see (3) her¢oupon) at zero yields:

LT, — O = { 2 [Li(T;) — 5K] — [Li(T) = K+ 7 f< %K
— [Li(T3) — f] [ 23K
The floored inverse floater coupon is a linear combinatiorapfets, which can be valued analyti-
cally. Hence we can use it as a control variate.

If we consider the payoff of a payer snowball (see (4) for thepon), it is clear that the under-
lying swap is the same as that of the inverse floater, with Xiceion that the striké& has now
been replaced by a path-dependent vélug + K. The easiest way to ensure that the “caplet” can
be valued analytically is to replace the path-dependeifedby a constant value, e.g. by assuming
that the forward term structure will be realised. Hereaftercan follow the same procedure as
for the inverse floater. Alternatively, one could considelyaamic self-financing strategy where
at several points in time during the simulation we updatesthikes using all information known
at that time. The main drawback hereof is the strong increatiee required computational time.
Initial tests of such strategies showed that the increasemputational time required does not out-
weigh the decrease in variance, so that we omit these rdwsris Similar findings were reported
in Jensen and Svenstrup (2005), where an approximate algelof a Bermudan swaption was
considered as a control variate.

4.2. Using multiple control variates

Even though the results in the section 3 were quite imprestiere must be better control variates
than the “cap” alone. We can try to improve the variance rédndy altering the strike of the
“cap”, or even of the individual “caplets”. This is indeednfiomed by our investigations, which
are not reported here. For the Bermudan swaption, merelygiha the strike of the cap/floor
increased the factdgt by approximately a factor of 2. In the case of the ATM Bermudzteiver
swaption the optimal strike was even as far away as 75 bp fnenotiginal strike.

The question is how to determine the strikes that yield tigaést correlation with the CLE. In
principle one could cache a small number of paths on which wémse the variance with respect
to the free parameters. Subsequently we would generatgex ladependent set of paths which
we then use to value the Bermudan.

Here we opt for a more pragmatic approach. Focusing on thenldan swaption, it is not
hard to see that a linear combination of caplets with difiestrikes can approximate the payoff of
a caplet with an unknown strike. In order to enable strikegaty per maturity, we split the total
“cap” into smaller “caps” with different strikes and diffart caplet maturities. The total amount
of control variates must be large enough to have enough flexito approximate the unknown
optimal control variate, yet small enough to avoid multic@arity between the control variates.

5. NUMERICAL RESULTS AND CONCLUSIONS

In this section we first investigate whether the generategsaoutlined in Section 4.1 yields a
satisfactory variance reduction for callable inverse #mtnd cancellable snowballs. Second, we
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investigate whether varying the strike of the suggestedrobwariates is effective, as detailed in
Section 4.2.

The exercise or cancellation dates of both products willhgesame as that of the Bermudan
swaption from Section 3, i.e. we can call or cancel on d@&iethrough7i,. Similarly, the cash
flow dates ardl; throughTi,. For the callable inverse floater we uke= 6.22% and f = 2%,
which ensures that the value of the underlying structureaps®/ almost zero. For the cancellable
snowball we take&”; = 1.35% and K = 3.1%. We only consider ATM products in this section,
the contract parameters of the inverse floater and the silcavbahosen such that the underlying
swap is roughly ATM.

Bermudan swaption| Callable inverse floatef Cancellable snowbal

Payer Receiver Payer Receivenn  Payer Receiver
Swap 6.7 2.1 5.9 2.7 n/a n/a
“Cap™ 190.4 8.9 109.8 9.7 7.9 18.8
3 “caps” 370.6 20.3 176.0 235 14.3 22.9
3x3 “subcaps” 520.3 62.0 337.8 63.8 26.1 40.5
11x3 “subcaps”| 456.0 54.5 n/a n/a n/a n/a

Table 3:6 for various control variates applied to ATM CLEs

Table 3 shows the variance reduction rgtiwe found when using various control variates. The
row labelled “swap” reports the results found by using thdartying structured swap as a control
variate. The swap underlying the cancellable snowball carasily be valued analytically, so
that we omit this result from the table. The row labelled “cgpneralises the strategy for the
Bermudan swaption to the other CLES, as outlined in SectitnHor the callable inverse floater
this clearly leads to a highly effective control variates tlee payer case. This confirms our idea
that an upper bound of the underlying LIBOR exotic is a higéffective control variate.

For the snowball contract, the magnitudefofs still quite significant, though not as large
as for the other contracts. This is caused by the path-depemdf the snowball coupon. As
mentioned earlier, we replaced the previous coupon in (4 bynstant which was calculated by
assuming the forward term structure would be realised.llgjnmay seem odd to the reader that
the cancellable receiver snowball has a highéran the payer contract. This is however caused
by the parity relation mentioned in (5).

To investigate whether the suggestions from Section 4.2teetive, we considered three
strategies:

e Use three “caps”, where the strikes are equaktax’ — 1% and K + 1%;

e Spliteach “cap” into three smaller “subcaps”, the first spag [T, 73], the second spanning
[Ty, T;] and the last spannin@s, 711]; as control variates we use each of these “subcaps”
with strikes equal td<, K — 1% and K + 1%;

e Splitthe “cap” into 11 “caplets”, and use each of these agwrobvariates with strikes equal
to K, K — 1% andK + 1%. This leads to a total of 33 control variates.

5To be precise, by cap we here mean the payoff which is foundibsyrsing all swaplets, floored at zero.



30 J. Buitelaar and R. Lord

For all CLEs we see that replacing the original cap by a vesftoaps gives significantly better
results. In this way we manage to get high variance redusfionboth the payer and the receiver
contracts. Note that thefound when using a vector of “subcaps” is higher comparedsioguall
“caplets” with three different strikes. The reason for tisishat the marginal increase in variance
reduction is offset by the increase in computation time. \&eehtherefore only reported these
results for the Bermudan swaption, and omitted them for thercCLEs.

Concluding, in this paper we have investigated the resukdby Jensen and Svenstrup that
a cap is a highly effective control variate when valuing arBedan payer swaption. We have
demonstrated how to generalise this idea to more generas ®yEonstructing an upper bound
for the CLE, and using this as a control variate. This can leaa large variance reduction, as
demonstrated in our numerical results. Benchmarking ttathod to other control variates, such
as the techniques of Bolia and Juneja (2005) and EhrlichmdiHanderson (2006) will be part
of further research.
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Abstract

We study a stochastic model for a market with two tradealdetasvhere the price of the first
asset is implied by the value of the second one and the staepaftially ‘hidden’ control
process. We derive a closed expression for the value of steafiset, as a function of the price
for the second and the most recent observation of the cqmokss. We show how the model
can be applied to EU markets for carbon emissions.

1. INTRODUCTION TO EU CARBON EMISSIONS MARKETS

The European Commission launched the European ClimategéHarogramme (ECCP) in June
2000 with the objective to identify, develop and implemémt ¢ssential elements of an EU strategy
to implement the Kyoto Protocol. The Kyoto protocol to theitdd Nations Framework Conven-
tion on Climate Change assigns mandatory targets for thectieth of greenhouse gas emissions
to signatory nations. Carbon dioxide, a by-product of thealoostion of fossil fuels, is the most
widely known type of greenhouse gas. All 25 EU countries $iameously ratified the Kyoto
Protocol on 31 May 2002.

The European Union Emission Trading Scheme (EU ETS) is afsignt part of the ECCP
and is currently the largest emissions trading scheme imtrt. To participate in the EU ETS,
members states must first submit a National Allocation PN&R) for approval to the European
Commission. Selected carbon intensive installations siscsteel manufacturers, power stations
of above 20 MW capacity, cement mills, etc. receive free siorscredits under the terms of this
NAP, enabling them to emit greenhouse gases up to the agdsigmeage.

Installations can bilaterally trade emission certificateder the EU ETS, in order to offset any
excess or shortage of carbon emission credits above NABlimbout 12 000 installations within
the Union are covered by the EU ETS in a first phase (2005-208@jesenting almost 50% of

33
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total carbon emissions. The EU ETS enables selected imelsistr reduce carbon emissions in
a cost effective manner, i.e. installations can opt foregitteducing actual carbon emissions or
buying additional permits, for instance in case upgradihthe installation would turn out too
expensive. The NAP only imposes a cap on the total actuaboagmissions per member state.

Actual trading with EU ETS emission allowances commencedamuary 1st, 2005. By the
end of the same year, almost 400 million tonnes of carborvatgnt had been traded, representing
a turnover in excess of EUR 7 billion. First phase EU ETS cartredits reached prices of EUR
30 per tonne at the high ending April 2006. Prices for firstgghearbon credits then plummeted
to below EUR 10 per tonne in a few days beginning May 2006 dtérfigures on actual 2005
emission levels suggested emission caps to selected redukad been too generous to have a
significant impact. Emission caps for the second phase (2008) are currently under review
because of the apparent overdimensioning of NAP levelsarfitet phase. Further reduction in
NAP levels is a likely alternative as well as the inclusionadiditional industry sectors such as
aviation and transport or still other harmful greenhouseeagaissions like methane.

Selected industries included in the EU ETS can opt to postpoocurement of Phase | emis-
sion allowances until Phase I, provided a fine of EUR 40 penéois paid at the end of Phase 1.
This rule actually constitutes a mechanism whereby pricePhase | and Phase Il emission cred
its become linked in case actual Phase | emissions exceeddVAR. Prices for Phase | contracts
at the end of the first phase will be nonzero only if the EU zeneeit short EU ETS carbon credits
for this phase. Industries can then opt for borrowing theirsETS position into the next phase at
a fixed cost of EUR 40 per tonne.

A net short position in the ETS trading zone thus imposes antity on prices for Phase |
and Phase Il emission allowances. In theory, Phase | pricess imthat case be equal to Phase Il
prices plus EUR 40 per tonne. If actual emissions turn ouetaivan NAP levels, Phase | credits
will be worthless at the end of Phase | and the relation witaseHI prices breaks down. Clearly,
Phase | emission allowances can be regarded as a derivdtivelase Il credits as an underlying,
contingent on the net position of the EU ETS zone at the end0¥2 The ‘net position of the
zone’ is a variable that cannot be directly observed in theketaand hence constitutes a source of
non-traded risk that renders the market incomplete.

The present note presents a mathematical model for incoenpiarkets that can be applied
to the context of the EU ETS. We depart from a diffusion modelRhase Il prices to which we
add an auxiliary process that models the net position of tHeEES zone on carbon emission
allowances. The price of Phase | contracts is conditionahervalue of Phase Il allowances and
the sign of the auxiliary process. Experiences with pridealveur of carbon emission allowances
at ending April 2006 has illustrated that the sign, rathantthe absolute value of the EU ETS
short position can already have a dramatic impact on praresairbon credits in Phase I. The latter
observation suggests a link between Phase | prices andythefsithe short position.

The remainder of this paper is as follows. In Section 2 weflgreimmarize the mean-variance
approach to the pricing and hedging of contingent claims.dé&eribe a mathematical model in
Section 3 for a more general incomplete market and we adthvesssk neutral pricing of a claim
whose value depends on the status of an assumed ‘hiddeablariThis model is applied to the
EU ETS in Section 4 where the price for the Phase | contraceprises, becomes a derivative
defined in terms of the auxiliary variable modelling the nesifon of the EU ETS zone and the
Phase Il contract price. The price of the Phase | contraestakcanonical form involving the
probability of the EU ETS zone being short at the end of Phase2007. Finally, we derive an
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analytical expression for the Laplace transform of thisbptulity density function, a calculation
involving specific properties of an Azema type martingale.

We investigate mathematical properties of this probabd#nsity function in Section 4. The
results of a number of numerical surveys to the influence @ftrious parameters are discussed
and we present evidence for applicability of the model taalctarbon market data. We finish
formulating some conclusions and directives for furtheesech.

2. PRICING AND HEDGING IN INCOMPLETE MARKETS

The issue of pricing and hedging when the market is incoraptea fairly well studied concept
in mathematical finance. As one cannot talk about a singtemihen the market is no longer
complete, there are different methodologies with diffgramaracteristics. One of the most popular
methods is to price and hedge using a quadratic risk-miritima criterion. For a short explana-
tion of this approach consider the following example. Kedenote the discounted price process
of the risky asset, which is a continuous semimartingalenddfion a filtered probability space
(Q, F, (Ft)o<t<r, P) satisfying usual assumptions. Lgtdenote the number of holdings in the
risky asset and denote the number of holdings in the bond, whose price is alized tol. Then
the value of the portfolio at timeéwould be given by, = &,.5; + ;. LetC; .=V, — f(f &,dS,.
C'is the cost process associated with the trading strategyvanttl be a constant process if the
trading strategy were self-financing. LBt be a contingent claim. In a complete market setting
we would be able to find a paft, ) such that,; = H and thatC' were a constant process, i.e.
H=C+ fOT &,dSs. However, in an incomplete markétwould not necessarily be constant since
it is typically not possible to find a self-financing replicet strategy. This means one needs to
find an optimality criterion to decide on the hedging strattegbe employed. The optimal hedging
strategy in this context is defined to be the one that minisiilae remaining quadratic risk at each
timet, i.e.E[(Cr — C;)?] — min. Itis shown by several authors (see, e.g., Follmer and Sidew
(1991), Follmer and Sondermann (1986), Monat and Stri¢k8®5) and Schweizer (1991)), un-
der different assumptions that, if one chooses this opiiynaiiterion, the price of the contingent
claim is given by

Xy = E*[H|-7:t]a

wherelE* corresponds to the expectation operator under the sadaall@mal martingale mea-
sure. The minimal martingale measur@; is an equivalent probability measure under whith
Is a martingale such that any martingale which was ortholgon& remains a martingale under
P* where M is the martingale part in the canonical decompositioty ofMoreover, the optimal
hedging strategy is given by
d(V,S)
€t = )
d(S)

whereV, = E*[H|F;]. This pricing and hedging methodology is clearly robustemefjuivalent
measure change. We refer the reader to Schweizer (1991mdftand Schweizer (1991), and
Monat and Stricker (1995) for further details on the minimmertingale measure and its usage in
financial markets.
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In the problem that will be analyzed in the next section, tttempleteness arise not only from
the fact that there are not enough traded securities to siidue ancertainty in the market but also
from the incomplete information. Mathematically speakitigs means the market’s information
is modelled by the filtrationlG; )o<:<r such thag, C F, for everyt where the inclusion is strict.
Under this restriction one could define the price of the cagent claim to be

Note that this is the optimal projection of the procéssnto the filtration(G;)o<:<r SO that the
distance between thg-price, X, andG-price, P, is minimized, again, in a quadratic sense. This
is the pricing methodology that we will use in the next sattio

3. ANINCOMPLETE MARKET MODEL

We consider a market modelled on a filtered probability sgéxcer, (F;)o<:<r, P) where one of
the traded assefs : 0 <t < T follows a dynamics of the Merton type:

dSt = St(,u dt + O'th), St:O = So. (l)

DenoteﬂW . 0 <t < T as the natural filtration for the Wiener procé$s: 0 <t < T, i.e.
FV=o(W,: 0<s<t).
The market is featured of a control procéss 0 < ¢t < T, described by a Brownian Motion,
i.e. we have
df, = dWy; 6,—o = bo. )

whereW, : 0 < t < T is another Wiener process, independentigf: 0 < t < T. This SDE
has the obvious solutiofy = 6, + W, : 0 < ¢t < T. To ease the exposition of the results we
supposé), = 0, but our result can be easily generalized to the settingevwhds any real number.
Defineg; : 0 <t < T as the filtration obtained by augmenting the filtrat{gft") by the filtration
generated by the signs éfi.e G, = FV v o(sign(6,) : 0 < u < t). The functionr — sign(z) is
defined asign(x) = 1if > 0 andsign(z) = —1 in caser < 0.

The market trades a contingent claim at ptife 0 < ¢ < T entailing the right on the timé&:
payoff S given by

0 if 60 >0 3)

wherex — f(z) is bounded real function. The value of the derivative thysedels on the sign
of the control procesér at expiry. Our goal is to derive the derivative pri6g : 0 <t < T,
conditioned on the information available from the assetephistorys; : 0 < ¢ < T and the sign
historysign(6;) : 0 <t < T of the control proces§,.

To proceed with this calculation, first note that the dynan{t) for S, under the minimal
martingale measui®* becomes a martingdievith the dynamics

sg:{ f(Sr) if 6 <0

dS; = Sio dW;; Si—g = Sp. (4)

P is defined byl — exp (~ Wy — § (£)°T) .
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whereWV;* : 0 <t <T'is a Wiener process undgr.

The assumption that’; is independent fronfit’, implies thatS and1V are orthogonal martin-
gales with respect to the filtratidhunderP* by the definition of the minimal martingale measure.
Following the lines of argument in the preceding sectioa tilme+ price for the derivatives?. can
be computed as

SP = E*[S% | G- (5)
We then have

*

2
o
=

S% | Gi

f(ST)1(0r < 0) | Gi]

f(57) | GIE [ 1(0r < 0) | Gy

f(S7) | GP*[0r < 0| Gi].

The remaining task is thus to compute the probabltit{y; < 0 | G;]. The filtrationgG, appearing
in this expression is of a peculiar type, as it involves bb#vt-algebraF/V generated by the price
process,S, and thes-algebrac(sign(d,) : 0 < u < t). Direct computation of this parameter

seems a difficult task, and we turn to the Laplace transfortiy-of W conditioned org; which
we write L(0r). We have

= E*
= [E*

[
[
[
= E*|

L(0r)(A) = E[exp(Ar) | G (6)
for some\ > 0. By virtue of the martingale property for exponential Broam motion, this
reduces to

LOr)(A) = E'lexp(Ar) | G
= E'[exp(AW7) | Gi]

- AT \2T
= Eexp(A\Wp — T) | Gi] eXP(T)

N\t AT
= E*[exp(/\VVt - 7) | gt] eXp(T)

2

- A
= Eexp(AW)) | Gl exp(—- (T~ 1)).
We thus need to focus on the computatioofexp(AIW;) | G;] only and this conditioning o8,
is generally referred to as the Azema martingale. We rewrite
E*[exp(AW;) | Gi] = E*[exp(A|Wi|sign(W7)) | Gi].

Now defineg; = sup{s < ¢ : W, = 0}, i.e. g, is the last instant preceding timehere the Wiener
procesdV, passed through the origin. Clearly,is measurable with respect@ and it is known
that M, := |W,|//u — g, Obeys the law/2Z for Z exponentially distributed with unit parameter
(see Revuz and Yor (1994)). We now use this result to cale@t Observe that

E*[exp(AW;) | Gi] = E* [exp(AM, sign(W)VE — g2) | Gil.

This conditional expectation can now be computed, as thedf/; is known. Let thegG;-
measurable random variablg be defined asl; = A sign(WW;)/t — g, then note that

E*[exp(A\W}) | G| = /0+<>0 exp(AV2z — 2) dx
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and we make the substitutian:= /2x to arrive at
~ +OO
E*exp(AW,) | Gi] = / exp(AV2z — x)dx
0

+0o0 u?
= / exp(Ayu — —)udu
0 2

+o0 1 A2
- / exp(—é(u—At)Q%—?t)udu
0

and upon substituting := « — A,, we finally arrive at

N +oo A A2
B lexpNT:) [ G = [ exp(—307 + 55 v+ A) du= 1+ AVERexp(HIN(A) - ()

2
il 2
A, 2

in which N (-) is the unit normal c.d.f., i.e.

¥

x e—z—
N = dz. 8
@)= [ =iz ®)
This finalizes the computation of the Laplace transforrgfwhich reads
)\2 A2
L(07)(N) = exp((T = 1) (1 + AV2w exp(FH)N(A) ©)

for A, = Asign(W,)/f — g;. To summarize, we intend to compute the probabiitif; < 0 | G;]
entering (5) via the Laplace transform@&f. We only need to invert the Laplace transform in (9)
to find the distribution o) givenG,;. By integrating this law over the negative half-plane, the
desired probability?* [0 < 0 | G;] results.

4. APPLICATION TO EU CARBON EMISSIONSMARKETS

The theory out of the previous section is directly applieablEU carbon emissions markets intro-
duced in Section 1. The traded asSet 0 < ¢ < T'in (1) describes the price process for the Phase
[l emission allowances within the EU ETS in EUR per tonne. €betrol process, : 0 <t < T
in (2) is interpreted as the net position of the entire EU E®Bezin tonne, relative to NAP lev-
els for all member states added together. Positive valuegs fadicate that an excess amount of
emission certificates is available within the EU ETS peranet timet. Alternatively, negative,
values are associated to a net short situation in the EU Efi& s at time.

The filtrationg; is the version of the natural filtratiaf}" for the price procesS; : 0 <t < T,
augmented with the information contained in the sign of thelU ETS positiorsign(6;) at time
t. l.e,G; only contains extra information on the net position on EU E€&Bificates within the zone,
long or short, regardless of the magnitude of the respeekiwess or shortage. Recent events have
indicated that price dynamics within the ETS framework aghly sensitive to market information
on just this net position, and the dramatic price-collaggehase | emission certificates serves as a
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direct example. In reality, one will observe the state of¢betrol prices, noteworthy its sign, any
time when the EU releases information on the realized caémoissions or alternatively through
estimates provided by selected data providers in the EUocaniarket, see PointCarbon (2006)
for instance.

The contingent clain$? : 0 < ¢ < T mimics the price of the Phase | contract and the specific
choicef(z) = z + k reflects the regulatory condition that short positions imghl allowances
can be banked into Phase Il at the pricé:of 40 EUR per tonne as explained in Section 1. The
definition for the Phase | payoff in (3) beautifully expressige true nature of the Phase | contract
as a derivative on Phase Il prices, conditional on the netippnst the end of the first phase, here
denotedag =T.

Equation

SY =E*[f(St) | GJP*[07 < 0| G] (10)

expresses the value of the Phase | contract in terms of tlotidan/ and the probability that the
ETS zone will end up short on carbon emission allowanceseaetid of the first phase= T.
After making use of the martingale property f6r: 0 < ¢ < 7 underP* and the explicit choice
for f, we obtain

Sp = (Si+k)P*0r <0 Gil.

Note that the probability of the ETS zone ending up shorteappg in the right hand side of (10),
can now be expressed as the fraction of Phase | EUA pricedediay the sum of Phase Il prices
and the penalty of = 40 EUR per tonne, i.e.

Sy
(Si+k)

The fractionR; is a known ratio in carbon markets, also referred to as thest?es’ ratio Pow-
ernextCarbon (2006) and it naturally arises in the pres@&uaisetting.

We finish by investigating the predictions of the present ehddr the probability for short
position in the ETS zone at the end of Phase |. The Laplacsftran (9) can be inverted to yield
the conditional probability density f@¥-. Integrating this density over the negative reals resalts i
the desired quantity. Standard inverting of the Laplacestfia@m gives

Ry :=P'0r <0| G =

0 +o00
R, =P 0r <0| G = %/ dz/ dXexp(—iz\) L(O7)(iN). (11)

This integral can be calculated by numerical methods, tiegtih model predictions for the Parson
ratio R;.

We have sef” = 1 without loss of generality, while takes values if0, 7] at the same time
wheng, satisfies the inequality < ¢, < t. The next table states selected valuesipfor different
values oft and g; given that the sign of the current position is positive. Thalues in the table
varies from 0.1 to 0.7, whilg; changes from 0.0 until thevalue. Values for?;, were computed
usingMathematica. The table indicates a 36% probability of the zone endinghgetdort = 0.1
andg, = 0.0. This probability steadily decreases for largeralues whileg, is kept constant.
This is an immediate consequence of the choice we made faothteol process: Since a Wiener
process is continuous asapproacheq§’ with g, fixed, sign(W,) converges taign(Wr). Values
for R, for ¢t > 0.7 are more difficult to obtain due to accuracy problems arigintipe calculation
of (11).
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Ri(+) gt

t 00 01 02 03 04 05 06 0.7
0.1 | .34 .50

0.2 | .28 .33 .50

0.3 | .23 .26 .32 .50

04 |.18 .21 .25 .31 .50

05 |.15 .17 .19 .23 .29 .50

06 |.112 .13 .15 .17 .21 .28 .50
0.7 .08 .09 .10 .12 .15 .18 .25 .50

We have repeated our numerical analysis of the ratio (11)dgative current position and the
corresponding table is marked y). The conventions are similar as before and results of this
effort are summarized in the next table. We note fRatalues now reflect the obvious fact that it
is more likely for the zone ending up short if the most recdrgasvation of the control procegs
pointed in the same direction. Values for the ratioare once more directly implied by the choice
for the control as a Wiener process. The table below expse¢ledact that the lesser the remaining
time in Phase | defined ¥ — ¢, the less likely the net position of the ETS zone is going tangje
still. The large values foR; for t = 0.7 are a direct consequence of this.

Rt(') gt
t 00 01 0.2 03 04 05 06 0.7
0.1 | .66 .50

0.2 | .72 .67 .50

03 |.77 .74 .68 .50

04 | .82 .79 .75 .69 .50

05 (.85 .83 .81 .77 .71 .50

06 |.89 .87 .85 .83 .79 .72 .50
0.7 .92 91 90 .88 .85 .82 .75 .50

The attentive reader will note from the above tables thageetive probabilities fogign(6;) = £1
add up to one. This is an immediate consequence of a symnresg in the Laplace transform
of the probability density in (9) as function of the sign oéttontrol process at time Characteri-
zation of this symmetry is left as an exercise, but evengumdils down to the symmetric nature of
marginal distributions for the Wiener process takef,as0 <t < T.

5. CONCLUSIONSAND OUTLOOK

We studied a model for an incomplete market with two tradestiss The first asset arises as a
derivative on the second and is conditional on the sign ofxagenous control process. The price
of the second asset is assumed of the Merton type, while thieotgrocess is described by an

independent Wiener process. We derive an expression fgortbe of the first asset under the

martingale measure minimizing the quadratic risk inducgdhie control process. This requires

computation of the minimal martingale measure for the grim®cess of the second asset.
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We have shown how our model can be applied to recently estedglimarkets for carbon emis-
sion allowances and calculated the price for a Phase | adritrderms of the probability of the
ETS zone being short at the end of Phase | in December 2007 rdbability of for Phase | ETS
is referred to as the Parson ratio in most literature andtutrafly arises in our model setting.

The price for Phase | emission allowances derived in thigpagpstrongly dependent on the
choice for the underlying control process. Selecting a \&igmmocess for the control leaves insuf-
ficient parameters for calibrating the model to historicatbd We currently study a model leaving
more degrees of freedom in the control that can be studiedercontext of stochastic filtering
theory. Results of this survey will be published elsewhere.

Acknowledgement: Michel Verschuere wishes to thank Ingard Moen for usefutuksions and
proofreading of the manuscript.
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Abstract

This paper analyzes how model misspecification associatedoathinterest rateandmortal-
ity risk influences hedging decisions of a life insurer. Huos fpurpose, diverse risk manage-
ment strategies which are risk-minimizing when model risighored come into consideration.
We look at how model risk affects the distribution of the hiedgerrors associated with these
strategies. The analysis is based on endowment assurahad@saembine an investment ele-
ment together with a sum assured. Due to periodic premiurtribations, i.e., the premium
payments stop in the case of an early death, a loan correisigotalthe present value of the
expected delayed premium payments must be asked for bysheemin order to implement
his hedging decisions. The effect of model risk on this being decision is additionally
analyzed.

1. INTRODUCTION

Endowment assurance products are policies which pay ouhasmoney on the death of the life
assured or at a specified date if the life assured survivetethe This implies that the maturity
date and the payoff of the contracts are conditioned on ththdine of the life insured.As com-
pensation, the insured provide periodic premiums untiptrgod before the specified date, as long
as they are still alive. Obviously, these contracts corttaih diversifiable mortality risk and trade-
able interest rate risk. Hence, risk management of the dssometracts is based on diversification
and hedging, i.e. trading on financial market.

In this paper, we analyze how model risk associated with ble¢hfuture evolution of the
interest rate and the insured’s future life expectancyctsféhe hedging decision of the insurer.

1About 75% of the life insurance contracts sold in Germangigtto this category.
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I.e. we consider market incompleteness caused by modgbeusication associated with both the
interest rate and mortality risk. In the analysis of pricamgl hedging the risk exposure to the issued
contracts, the insurance company makes model assumphonsthe term structure of the interest
rate and the death distribution. However, the contraatésis and the hedging effectiveness depend
on the true interest rate dynamic and the true death disiwibuModel misspecification related
to the interest rate risk has always been an issue for lileréns because they have difficulties in
date inputs to find an appropriate term structure model aftettehe true data generating interest
rate process perfectly. Mortality misspecification hasaated more and more attention recently. It
can be caused either by a false estimation of the insurer. dicalebreakthrough or a catastrophe
can lead to an unexpected increase or decrease in life expgcto a big extent. Moreover, it
can result from an intentional abuse of the insurer. For @tayan insurer might overestimate
the death probability of a potential 70 year’s customertghtely. By doing this, the (assumed)
expected period of annuity payment is shortened. Conséguaiigher annuity payment can be
offered in order to attract this customer. Due to the fact ithia most of time insurance brokers
who close contracts with customers and due to their ownastemwhich might be inconsistent with
the insurance company’s, this kind of mortality misspeatfmn is not an uncommon phenomenon.

Concerning the literature on model risk, there is an exteranalysis of financial market risk.
Without postulating completeness, we refer to the papekyafs (1995), Bergman et al. (1996),
El Karoui et al. (1998), Hobson (1998), and Mahayni (20033t jo quote a few. Certainly, there
are also papers dealing with different scenarios of maytakk and/or stochastic death distribu-
tions, for instance, Milevsky and Promislow (2001), Blakelk (2006), Ballotta and Haberman
(2006), and Grundl et al. (2006). A recent paper of Dahl amedl&éf (2006) considers the valuation
and hedging problems of life insurance contracts when theatity intensity is affected by some
stochastic processes. However, to our knowledge, thenecapapers which analyze the distribu-
tion of the hedging errors resulting from the combinatiomaoth. Therefore, in the present paper,
model risk is investigated by studying how it influences tlsribution of hedging errors. Speak-
ing of hedging errors, we shall determine the underlyinggivegl strategies. Neglecting model
misspecification, the considered strategies are riskrmanng. The concept of risk-minimizing
is firstly introduced in Follmer and Sondermann (1986) apgliad to the context of insurance
contracts in Mgller (1998). In the considered contract gpation, the most natural hedging
instruments are given by the corresponding set of zero aobpads. Apparently, a strategy con-
taining the entire term structure is an ideal case. In anldito this ideal case, we also consider
a more realistic case where the set of hedging instrumemésigcted, i.e. it is only possible to
hedge in a subset of bonds.

In order to initialize the above strategies, the insuredses amount corresponding to the ini-
tial contract value, while he only obtains the first periggiemium at the beginning. Therefore, a
credit corresponding to the (assumed) expected discouated of the delayed periodic premiums
should be taken by the insurer, because the initial contedoe equals the (assumed) present value
of the entire periodic premiums. The insurance companyetadth a simple selling strategy to
pay back this loan. Apparently, the effectiveness of thiategy in the liability side depends on
the model risk too.

It turns out that, independent of the model risk associatith the interest rates, an overes-
timation of the death probability yields a superhedge inrttean, i.e. the hedger is on the safe
side on average. In the case that there is no misspecificaitbrrespect to the mortality risk,
the model risk concerning the interest rate has no impachemtean of the hedging error. In
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contrast, the effect of interest rate misspecification enériance is crucial, in particular if the set

of hedging instruments is restricted. In the case that tisare misspecification with respect to the

interest rate dynamic, all strategies considered leadeadéme variance level, independent of the
mortality. Therefore, the interactivity of both sourceswddel risk is found to have a pronounced

effect on the risk management of the insurer.

The remaining of the paper is organized as follows. Secti@taies the basic features of
the insurance contract considered. Section 3 introdua$eidging problem and optimal risk-
minimizing hedging strategies. In addition, we study howdelanisspecification affects the dis-
tribution of the hedging errors associated with the relegarategies. Section 4 illustrates some
numerical results for the distributions of the hedging exronder different scenarios of model
misspecification. Section 5 concludes the paper.

2. PRODUCT DESCRIPTION

We consider an endowment assurance product with periodiaipmsA. In the following,T” =
{to,...,tn_1,ty} denotes a discrete set of equidistant reference dates whiere ¢, — ¢
gives the distance between two reference dates. The inpasex] as long as he lives, a constant
periodic premiumA until the last reference datg; ;. In particular, if7* denotes the random
time of death of a live aged, then the last premium is due at the random time&heres :=
min {N — 1,n*(7%)} andn*(t) := max{j € Ny|t; < t}. The insured receives his payoff at the
next reference date after his last premium payment, i.eebeives his payoff at random time
T := min {tN, tn*(Tx)H}. We denote the endowment part of the contract specificatoin énd
assume that the insured receives at timthe higher amount ok and an insurance accoufi
which depends on his paid premiums. &t denote the payoff &f, then

Gr = max{h, Gr}.

Notice that the contract specification implies that the fiehand contributions depend on the time
of deathr”. In the case that:r = 0, we have a simple endowment contract which always pays
out ~ amount no matter how the death time of the customer evolvepailticular, the insurance
knows exactly its amount of liability but does not know whersidue. In contrast to the simple
endowment contract, we consider contracts which also givenainal capital guarantee, i.e., the
insured gets back his paid premiums accrued with an intea¢sty (¢ > 0), i.e. we use the
following convention

Ati = ZAeg(tiitj), Gt¢+1 = AtiegAt7 7= O, 17 ey N —1.
7=0

To sum up the contract specification, it is convenient toaaotinat

=

GT = Gti+l l{ti<7'z§ti+1} + Gtz\r 1{7'z>tN}' (l)

I
o
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3. HEDGING

First, the motivation and derivation of the hedging stregegs based on the value process of the
claim to be hedged.

Proposition 3.1 (Value Process) In our arbitrage-free model setup, the contract value atetim
t € [0, 7] is given by

N—-1
Ct = th D(t, tj) tj—lﬁjdlf‘ﬁf + GtN D(t, tN) tN—lﬁerta
j=n*(t)+1

where,, ,p..+ denotes the assumed conditional probability thatzaaged life surviving timd”

given that he has survived ,,_;,G..: the assumed conditional probability that araged life
dies between;_; andt; given that he has survived timeand D(¢, ¢;) the timet-market price of
a zero coupon bond with maturity?.

Proof. Using Equation (1) and standard theory of pricing by no eabi implies that the contract
value att (0 < ¢t < T) is given by the expected discounted payoff under the ngatenmeasure
P* l.e.,

C; = Ep- [67 Ji r“duGT‘ft].

|

The hedging possibility and effectiveness of a claim depamdhe set of available hedging
instruments. With respect to the insurance contract unalesideration, the most natural hedging
instruments are given by the set of zero coupon bonds withuniast,, ..., ty, i.e., by the set
{D(.,t1),...,D(.,tn)}. Thus, we consider the sétof hedging strategies which consist of these
bonds, i.e.,

@={¢:wmww¢“>

N
¢ is trading strategy with’(¢) = >~ ¢“'D(., 1;) } :
j=1

However, due to liquidity constraints in general or trarigaccosts in particular, it is not possible
or convenient to use all bonds for the hedging purpose. Ehimadelled in the following by
restricting the class of strategids The relevant subset is denoted thy C ®. To simplify
the exposition, we propose that the assumed interest ratendyg is given by a one-factor term
structure model and set

V={ye@[y=1(0,...,0¢"N D M)}

Two comments are necessary. First, the assumption of aamte-fterm structure model implies
that two bonds are enough to synthesize any bond with myat{tt. . . ¢y }. However, the fol-
lowing discussion can easily be extended to a multi-factontstructure model. Second, as the
bonds cease to exist as time goes by, it is simply converoauige the two bonds with the longest
time to maturity.

2We put tilde on the death/survival probabilities to dendie assumed ones. Similarly, later we put tilde on the
parameters describing term structure of the interest cademote the corresponding assumed ones.
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As a very conventional hedging criterion used in life insw@ contracts, risk-minimizing is
applied here as well. Along the lines of Mgller (1998), weidethe risk-minimizing hedging
strategy for both cases: when the entire term structure envamly the last two zero bonds are
used. They are simply denoted byand respectively. The motivation and derivation of the
hedging strategies are based on the value process of time tdabe hedged. Proposition 3.1
immediately motivates a duplication strategy on the{get 7*}. Prior to the death time®, the
contract value (at time) can be synthesized by a trading strategy which consist®dd with
maturitiest; (i = n*(t) + 1,...,N). Assuming that the insurance company will not learn the
death of the customer until no further premiums are paid lbyirtsured implies that the strategy
proceeds on the sete]r*, T in the same way as on the set [0, 7%]. Notice that the number of
available instruments, i.e. the number of bonds, decresmséme goes by. At timg only bonds
with maturities later tham*(¢) are traded, i.e., the hedger buys - ;, , ;.. units of D(¢,¢;) and
Ginin_ Pere Units of D(t, ty). The advantage of using this strategy is that the stratsgif i not
dependent on the model assumptions of the interest rate.

Proposition 3.2 Let ¢ € ® denote a risk- (variance-)minimizing trading strategyhwiespect

to the set of trading strategieB. Assume that the insurance company notices the death of the
customer only when no further premium is paid by the insuifezhe additionally restricts the set

of admissible strategies to the ones which are independehederm structure, then it holdsgi is
uniquely determined and fore [0, T

|
—_

(bgi) = 1{t§ti} Gti i1t Gt L=

N ~
zg,) - GtNthlpm-f—t’

Proof. Without the introduction of model risk it is easily seen th@atand the contract valu€;,
according to Proposition 3.1 coincide. Thus, with Proposi8.1 it follows thatp is self—financing
in the mean. Since the stochastic interest rate risk canreaked by trading in all “natural” zero
coupon bonds, Mgller’'s (1998) results concerning the iedépnce of mortality and market risk
can be adopted here. Since an endowment insurance is a enoftpure endowment and term
insurance, the results immediately follow from Theoremahd Theorem 4.9 of Mgller (19988.

A one-factor short rate model is complete in two bonds, he. availability of two bonds
with different maturities is enough to synthesize any fartbhond. Therefore, without postulating
the independence from the interest rate model, the varamicignizing strategy is not defined
uniquely.

Proposition 3.3 Let denote the risk- (variance-)minimizing trading strategihwespect to the
set of trading strategie¥ C ®. Assuming that the insurance company notices the deatreof th
customer only when no further premiums are paid by the irtsimglies that fort € [0, T']

N—-2
B _ - D t,ti 7
DY =L | Loy D Gtm_ntiqaﬁti( ) A ()
i=n*(t)+1 D(t’ tN_l)

+ Lp<in 1y Gin, tN_gtN_lfch)
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N-2 D(t,t;)
o, . o . VNI
U, {r 2t}< {t<ty_2} 4_%“ t; ti71|tz’QLL‘+tD(t7 ty) 2 (t)

+ Gtz\r (twfl\twq}-i-t + twﬁm-i—t))

Gy, () — a1y (1) @ Oty (1) = 04,(1)
G () () = T e )

with &;(¢) denoting the assumed volatility of a zero coupon bond witturitg datet at timet.

where A (¢) :=

Proof. Notice that, in the setup of a one-factor short rate modeteths a self-financing strategy
o = (a®, 3") with value proces®;(6")) = ol D(t,tn 1) + B9D(t, ty) = D(t,t;) for

i=1,...,N. One can easily write down the strategy fo(-, ¢,), i.e.,
) D(t t-) ) ) D(t t-) )
(i) _ L) 6y @) _ P4 oy,
t D(t,thl) 1 ( )7 t D(t,t]\[) 2 ( )

Where)\(f)(t) and)\(;)(t) are given as above. Notice tHa{¢)) = D(t, t;) P-almost surely implies
Var[ L} (v)] = Var[Ls.(¢)]. This together withl C ® ends the proof. u
Obviously, the strategy itself depends on the term streatuodel of the interest rate. Basically,
by using a one-factor interest model, the risk-minimizitrgtegy for the insurance contract can be
implemented in any subset of bonds with at least two elem@ngeneralization is straightforward
if a hedging instrument is added for every dimension of reskdr which is introduced to the short
rate model.

It is noticed that the implementation of the above strategédbased on taking a credit @t
Since the initial value of the hedging strategies is giverth®y expected value of the premium
inflows, the insurer must in fact borrow the amo@ﬁ{lAtiﬁmD(to,ti). The underpinning
strategy for this is to sell ;, p, bonds with maturityt; (i = 1,...,¢y_1). Under mortality risk,
it is not necessarily the case that the insurer achievedlgxhe number of periodic premiums
which are necessary to pay back the credit. These discriggadead to extra costs. In particular,
these costs can be understood as a sequence of cash flowteeiiasurer has to pay back;,p.
ateachtime; i = 1,...,ty_1), i.e. independent of whether the insured survives. Tloeeethe
additional discounted costs associated with the aboveworg strategy are given by

N—-1

Z e Jo' | (tlﬁz - 1{rz>ti}) . (2)

i=1

Proposition 3.4 (Expected total discounted hedging costs) Let L} denote the discounted total
costs from both the asset and the liability sidez/) denotes the strategy given in Proposition 3.2
(3.3). Taking account of model riskp«[L%(¢)] and Ep-[L%(1))] own the same value:

-1 N—-1
D(t07 tN)GtN (th:): - tNﬁ:D) + (tj,l\th:r - tj,1|tjq~x)D(t07 t])ét] + Z D(t07 tZ)A (tzﬁx - tsz> .

j=1 i=1

=
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Proof. This proposition is an immediate consequence of Proposit®l ( = ¢,), in addition to
taking the expectation of the addition cost term given in&ioun (2). |

Notice that, independent of the set of bonds, the expectst$ @ve the same. Furthermore,
independent of the model risk related to the interest ratatatity misspecification determines
the sign of the expected value, i.e., that decides when alsegge in the mean can be achieved.
When no mortality misspecification is available, the modsX related to the interest rate has no
impact on the expected value. When there exists mortalisgpecification, the model risk related
to the interest rate will influence the size of the expectddevaTherefore, the effect of model
risk associated with the interest rate depends on the rnitgnaisspecification. However, when
it comes to the analysis of the variance, model risk assegtiaith the interest rate has a more
pronounced effect than mortality misspecification.

Proposition 3.5 (Additional variance) It holds
Varp:[L7(¢)] = Varp-[L7(¢)] + AVr

with AV = 0 when there exists no model risk related to the interest @tteerwise

N-1

AV = e B [(15,0) = Ty (0] + 3 ieyente B [(T,,(0) = 7, (0))7] > 0,

7=0

wherel* denotes the discounted gains process, i.e.

Z/¢()dD (u, t;)

Proof. The proof is given in Chen and Mahayani (2007). ]

It should be emphasized that the effect of mortality missation depends on the model risk
related to the interest rate. If there exists no interest maisspecification, mortality misspecifi-
cation plays no role in the additional variance. Howevethére exists model risk related to the
interest rate, an additional variance part results alwaysnathe restricted subset of zero coupon
bonds are used as hedging instruments.

As stated in the introduction, mortality misspecificati@nde caused by a deliberate use of
the insurance company for certain purposes, e.g. safetpmea l.e., a deviation of the assumed
mortality from the true one is generated by a shift in the peaterz which leads to a shift in the
life expectancy. For this purpose, we Jgt and;q; denote the assumed probabilitigs and, ..

Proposition 3.6 For any realistic death/survival probability which satessi

atpx au|th-i-v
<0, and
ox ’ or

>0, v<u<t,

we obtain that

0] M%,;L?] < 0. Furthermore, an overestimation of the death probabilég (inderestimation

of the survival probability) leads to a superhedge in the méa., Ep-[L}] < 0.
(i) The additional variance given in Proposition 3.5 is reasing inz.

Proof. Proof is given in Chen and Mahayani (2007). ]
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contract parameter interest rate parameter mortality parameter
(Vasicek model) (Makeham)

g=0.05 initial spot rate = 0.05

h =20673.6 (7;,, = 35694.6)|| spot rate volatility = 0.03 H =0.0005075787

ty =30 (years) speed of mean reversion = 0.18% = 0.000039342435%

x =40,A =500 long run mean = 0.07 ¢=1.10291509

Table 1:Basic (assumed) model parameter.

4. ILLUSTRATION OF RESULTS

To illustrate the results of the last sections, we use a aotif VasiCek-type model framework to
describe the financial market risk and a death distributmoaling to Makeham. The Vasicek-
model implies that the volatility() of a zero coupon bond with maturityis o7(t) = 2(1 —
exp{—k(t — t)}) wherex andg are non-negative parametersis the volatility of the short rate
andx the speed factor of mean reversion. The death distributicording to Makeham is depicted

as follows
t
tﬁx = €xp {_/ Hz+s dé‘}, (3)
0

foye = H+ K,

As a benchmark case, we use a parameter constellation denmés of Delbaen (1990) which
is given in Table 1. We introduce the model risk by taking iat@ount that the model parameters
which are used to construct the hedging strategies maytedwian the true ones. Concerning the
death distribution, we take Makeham hazard rate as an exaampl concentrate on the mortality
misspecifiction caused by the shift in age.

4.1. Expected total costs

Figure 1 demonstrates how the death and survival probgbibt, ;. _,|;,¢. changes with the age
x. With the change of, the death and survival probability demonstrate a parahdt. If the
true age of the customer is 40, then an assumed age of 50 teadverestimation of the death
probability and an assumed age of 30 results in an underasbimof the death probability. Of
course the survival probability ang, has exactly a reversed trend.

How the expected discounted total costs from both assetiahility side change with the
assumed age is depicted in Figure 2. It is noticed that, for the given paegers, the expected
discounted total cost exhibits a negative relatiorxinThe higherz, the lower the expected to-
tal costs. It is observed that, independent of the set ofihgdgstruments (bonds), the hedger
achieves profits in mean (negative expected discountedl iEbst overestimates the death proba-
bilities.2 Hence, negative expected discounted costs result whem tegmaller than the assumed

3This result is opposite to the result in pure endowment ensce contracts, where a negative expected discounted
cost is achieved when an overestimation of the survivalglodity exists.
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Figure 11, | q. for z = 30, 40, 50. The Figure 2:Expected cost foi = 30, 35, 40, 45,
other parameters are given in Table 1. 50 with the realz = 40. The other parameters
are given in Table 1.

one. Converse effects are observed when the insurer utideaitss the death probability. Here,
a real age of 40 is taken and it is observed thatifer 45, 50, the expected costs have negative
values (lower two curves), and for= 30, 35, the expected costs exhibit positive values. When the
true age coincides with the assumed one, the consideradgtriz mean-self-financing because
the expected discounted cost equals zero.

4.2. Variance Difference

In contrast to the expected total costs, the distributiothefcosts depends on the set of hedging
instruments. This subsection attempts to illustrate hasvvéwriance difference depends on the
model risk. Assuming that the short rate is driven by a omgefavasicek model, model risk asso-
ciated with the interest rate can be characterized eithéndynismatch of the volatilityx) or the
speed factorx), which are determining factors in the volatility functiohthe zero coupon bonds.
Due to the Vasicek modelling, the misspecificatiormdias no impact on the variance difference.
Therefore, in the following, we concentrate on the interatt misspecification characterized by
the deviation of the assumedrom the truex.

We obtain some values for the variance difference as exddlit Table 2. Firstly, there exists
a deviation ofs from k, the variances of these two strategies differ, even where tiseno mor-
tality misspecification. Secondly, mortality misspecifica does not have impact on the variance
difference, if there are no interest rate misspecificati@lable. I.e., these two strategies make no
difference to the variance of the total cost if no model riskaciated with the interest rate appears.
Therefore, fork = k = 0.18, overall the variance difference exhibits a valué)offhese two ob-
servations validate the argument that the model misspatidit resulting from the term structure
of the interest rate has a substantial effect when the wagiantaken into account. The effect of
mortality risk is partly contingent on the model risk assded with the interest rate. Thirdly, only
the absolute distance éffrom x counts. The bigger this absolute distance is, the highéaves
differences these two strategies result in. Thereforeradiwmou observe parabolic curves for the
variance difference. In addition, the variance differemoeeases irx. This positive effect can be
observed in Figures 3 and 4.

To sum up, if the hedger substantially overestimakes £ «) or underestimates:.(>> ) the
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\ \ Expected total cost | Variance Difference | The Ratio |
K =235 | =40 T =45 =35 | x2=40 | =45 |z=35 | x2=40| =45
0.150| 287.795 0 —449.842| 774.983| 1876.71| 4660.65| 0.0967 — —0.1518
0.155| 293.229 0 —457.831| 568.654| 1375.73| 3414.78| 0.0813 — —0.1276
0.160| 297.998 0 —464.843| 385.079| 930.677| 2308.87| 0.0659 — —0.1034
0.165| 302.192 0 —471.014| 229.521| 554.135| 1373.97| 0.0501 — —0.0787
0.170| 305.891 0 —476.458| 108.254| 261.073| 646.952| 0.0340 — —0.0534
0.175| 309.159 0 —481.270| 28.7651| 69.2933| 171.608| 0.0173 — —0.0272

0.180| 312.054 0 —485.532 0 0 0 0 — 0

0.185| 314.621 0 —489.315| 32.6569| 78.4791| 194.106| 0.0182 — —0.0285
0.190| 316.903 0 —492.677| 139.546| 334.922| 827.806| 0.0373 — —0.0584
0.195| 318.934 0 —495.670| 336.029| 805.425| 1989.29| 0.0575 — —0.0890
0.200| 320.745 0 —498.338| 640.547| 1533.21| 3783.96| 0.0789 — —0.1234
0.205| 322.361 0 —500.719| 1075.28| 2570.10| 6338.04| 0.1017 — —0.1590
0.210| 323.805 0 —502.847| 1666.92| 3978.35| 9802.85| 0.1261 — —0.1969

Table 2: Expected total cost, variance differences andahe of the standard deviation of the
variance difference and the expected total cost for vargimgth + = 40 and the other parameters
are given in Table 1.

bond volatilities, and if at the same time he highly overastes the death probability > ),
the diverse choice of the hedging instruments leads to a diffgeence in the variance. On the
contrary, & value close ta: combined with a big overestimation of the survival probigp{lz <<

x) almost leads to very small variance difference. l.e., \@oge variances result. The choice of
the hedging instrument does not have a significant effecewutids circumstance. These result
leads to a very interesting phenomenon, with an overesomat the death probabilityi( > x),
the insurance company is always on the safe side in meanitiaezhieves a superhedge in the
mean. However, if the set of hedging instruments is restlican overestimation of the death
probability does not necessarily decrease the shortfabadility under a huge misspecification
associated with the interest rate (characterized by a higtien of = from ). This is due to the
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Figure 3:Variance difference as function of Figure 4: Variance difference as function &f
Z with the realz = 40 for kK = 0.16, & = with the realk = 0.18 for z = 35, £ = 40 and
0.18 and% = 0.20. The other parameters are Z = 45. The other parameters are given in Table

given in Table 1. 1.
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observation that a quite high variance difference is redcimeler this parameter constellation.

In addition, due to the tradeoff between the expected vahdketlae variance differenégit is
interesting to have a look at the relative size, like theorafithe standard deviation of the variance
difference and the expected value of the total cost from lagget and liability side. First of
all, this ratio is not defined when the assumed and real ageide. Second of all, here for the
given parameters, an overestimation of the death probabili= 45) has a higher effect than an
underestimationi = 35), i.e. the absolute value of this ratio is larger for the caké = 45.
Finally, this ratio can give a hint to the safety loading actAssume, the insurer uses standard—
deviation premium principle. The ratio given in Table 2 setg him how much safety loading to
take when he uses the last two bonds instead of the entiresteucture.

5. CONCLUSION

The risk management of an insurance company must take intmatmodel risk, i.e. the uncer-
tainty about the interest rate and the life expectancy. Wevghat even a small difference between
assumed and realized death scenarios may have a great onghethedging performance because
of the existence of interest rate risk. In practice, thisagipularly important because a deviation
of true and assumed mortality/survival probabilities iswwidable and sometimes even caused
intentionally by the insurance company itself. The probiehch is associated with the interde-
pendence of model risk concerning the interest rate dynamddhe mortality distribution is even
more severe if there is a restriction on the set of hedgingungents. We measure the risk im-
plied by the restriction of hedging instruments by caldaigathe additional variance of the hedging
costs, i.e. the variance which is to be added to the variamoewithout the restriction. Further, we
stress an important problem which arises if, as it is noyraédhe, the contributions of the insured
are given in terms of periodic premiums instead of an uptfppemium. If the contributions of the
insured are delayed to a future, uncertain time, model n8kkences the liability side in addition
to the asset side. Theoretically, a credit must be taken éynisurer in order to implement the
considered hedging strategies in the asset side. The matineeves not necessarily the number
of periodic premiums which is needed to pay back his crediicivleads to an extra cost to the
insurer. To sum up, neither the model risk which is relatetheodeath distribution nor the one
associated with the financial market model is negligiblesfoneaningful risk management.
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Abstract

The risks involved in the Himalaya options market have née&n more evident than in recent
years as these options have been responsible for heavg logsethat period. These losses
have occurred not only because of adverse market conditiginglso because of model mis-
specifications. Principal among the dangers of pricingesnibility to find a volatility model
which is consistent with the observed volatility surfacésndividual stocks involved in the
Himalayan. In this paper we present a solution to this prolg using a multivariate mixture
of densities technique. We outline the practical implimasi of extending this technique to the
Himalayan setting and present our numerical results inildeta

1. INTRODUCTION

Himalayan options first appeared in 1998 when they wereduired by Société Générale as part
of their mountain range series of options. At the time the &agan was an entirely new type of
derivative product that merged the path dependency ofdyamptions with the multi dimensionality
of basket options. Since then several derivatives haveageuithe structure of the Himalayan most
notably the Emerald option which has been introduced on idonarkets.

Although the Himalayan contains some very exotic traity tte:n be classified as European in
nature and as such their pricing is heavily dependent onghalsensitivities, namely correlation
estimation and the volatility smile. In any basket type optcorrelation plays a major role in
pricing, thus significant care is required when estimatimg parameter. Including historical cor-
relation directly in pricing is a risk since underlying celiations can change significantly during
times of market stress. The issue of modeling the volatilityle is of great practical importance
for a Himalayan because when stocks are removed from thetihgksmile can become distorted.

The primary concern of this paper is to apply a mixture of dersstechnique to the pricing of
Himalayan options in order to deal with the volatility smil€his is done by applying a method
developed by Brigo et al. (2004) which constructs an entimelv manifold of local volatility struc-
tures and removes the need for costly time discretizatioiciwis common for the conventional
mixture of densities model.

55
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This paper is split into four sections. The first is a briefiegwof the Himalayan option includ-
ing a description of some of the different variants avagablhe second covers the conventional
approach to the multidimensional mixture of densities drahtexplains the multivariate mixture
of densities (MVMD) developed by Brigo et al. (2004). We thegoply their technique to the
Himalayan option and finally we end with conclusions and gids on further work.

2. HHIMALAYAN OPTIONS

A Himalayan may most simply be described as a call on the suthredfest performers on a basket
of stocks over a certain time interval. At the beginning o ttontract a collection of exercise
dates is decided upon. The number of dates may be equal tathken of stocks in the basket
or depending on the variant of the Himalayan it could be le&seach of these dates the best
performing stock (according to a specified performance oredss permanently removed from
the basket and its return becomes a coupon. This processnigdpeated at each exercise date
until there is only one stock left.

Suppose we have a Himalayan written on the underlying sto¢ks., ..., S, and that the
contract is active over the time interjal 7'|. This interval is then split inta subintervals written
as:

[t07t1]7 [t17t2]7 e ey [tzfl,tz]7 e ey [tn717tn]

wheret, = 0 andt,, = T'. The end point of each of these intervals represents tercise dates
where the best performing stock will be removed from the badgnoring discounting, the payoff
of a Himalayan will then take one of the following forms:

max - Sm(i)(ti> B
{A ; (Smu)(o) 1) ’ O} (1)

or

e { (5206 ) o) @

where A is the nominal amount associated with the contract and tthexim (i) records the best
performer of the stocks which remain on the interjal,, ¢;]. We will illustrate the difference
between both variants by way of an example.
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Months
0 1 2 3 4 5 6
A | 105.18 100.00 96.54 87.45 91.40 92.89 89.06
B 9.12 10.63 11.14 15.67 14.12 13,56 16|76
C| 48.97 5090 5897 5540 60.20 61.23 65/45
D| 15.62 1753 25.73 30.91 32.00 34.71 3849
E| 90.14 100.05 105.36 107.86 111.65 116.23 121.49
F| 90.36 84.99 89.11 93.06 96.96 99.01 94|62
Table 1: Stock Price Table
Monthly Returns

1 2 3 4 5 6 Couporn

A|-0.05 -0.08 -0.17 -0.13 -0.12 -0.15 -0.15

B 0.16 0.16

C 0.04 0.20 0.13 0.23 0.23

D 0.12 0.64 0.64

E 0.11 0.17 0.20 0.20

F| -0.06 -0.01 0.03 0.07 _0.10 0.10

Table 2: Stock Price Returns

Suppose we have a Himalayan of the type (1) written on six lyidg stocks A, B, C, D, Eand F
with table 1 charting the closing price of these stocks owetime periods. Table 2 calculates the
terminal payoff of the Himalayan in this situation. The ficslumn of table 2 shows the return of
each stock over period one. As is shown B has the highestr#tus this return is locked in as the
first coupon and B is removed from the basket. This proces®isitepeated in the next 5 columns
with the final column showing the contribution of each stockpayoff of the Himalayan. The
payoff is then the sum of the coupons. In this case the payad$fivl8. The Himalayan described
in (2) could have improved on this payoff since the contitrubf A would have been floored at
zero giving a payoff of 1.33.
Another variation to the Himalayan is to payout on fewer pesi

max - Sm(i)(tz‘) B
{A;(Sm@m) 1)’0} )

or

L
Sy (ti)
A max{( ® —1),0} 4)
Z‘ Smii(0)
whereL < n. This can have the effect of increasing the payout sincekstthat have performed
badly over the entire contract can be excluded from the paywour example if we had let = 5

then the payout would have excluded A which performed poorly
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The structure of the Himalayan can be changed drasticallyahyulating the returns in a dif-
ferent manner. Instead of returns being relative to théaimrices at the start of the contract we
can calculate returns over a period relative to the openiitg pf stocks at the beginning of that
period. This leads to the following pricing functions:

max{Aé(%—l),O} (5)

Sm(i)

. Sy (L)
A max{<#—1) ,0} (6)
Z Sm() (ti=1)
where agaimn (i) indexes the best performing stock from those that remaintbegeriodt; i, t;].
This variation tends to wipe out the bad past performancesoocks and although returns will de-
crease as more stocks are removed from the basket the fir@ltpal in general be higher than

the structure (1) and (2). For a more detailed descriptioth@fHimalayan option see Overhaus
(2002).

3. MIXTURE OF DENSITIES (MD)

The issue of volatility modeling is of great importance fointdlayan options since each of the
stocks involved with the option and the basket itself areljito show a volatility smile. In order to
deal with this we propose to use a multivariate mixture ofsiteas (MVMD) technique developed
by Brigo et al. (2004) in the context of Himalayas.

Suppose we have a stoSkwhich exhibits a non constant volatility and obeys dynangigen
by the equation

dSt = ,LLStdt + U(St7 t)Stth

under thel” forward measuré)” wherey is constant}V is a standard Brownian motion ands
well behaved function which obeys linear growth conditiodader these circumstances a unique
solution to the above SDE exists. The aim of the MD technique find the local volatility ofS; in
terms of the marginal densities of auxiliary processes’. These are governed by the dynamics

dz) = pzpdt + v (zF, ) dW,

where each? has marginal density} andv, (2F, t) satisfies linear growth conditions. The marginal
density ofS; is then assumed to be representable as a convex combinéti@narginal densities
of zf,

pi(S) = Mt
k

with A, > 0 for all £ and)_, A\, = 1. Through manipulations of the related forward Kolmogorov
equations it can be shown that a candidate for the localilitfaif S; can be written as
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Avi(y, t)p
y) Zkl kY )t' (7)
Zk 1)‘kypt

If the triplet (zF, vy, pf) is defined as

2= S0 vy, t) =you(t) Vilt) =/ [y of(s)ds

m _% <lo <5‘7{0) ut + Vk())Ql

the corresponding dynamics f6(¢) admits a unique strong solution with local volatility as &imo
previously. As a consequence of (7) pricing a European ongtexcomes immediate since mixing
basic lognormal densities leads to analytically tractaipieon prices under the model process for
the underlying asset. In the case of a European call on tlok Stavith maturity 7" and strikeK
the initial price is

and

pi(y) = exp

DQTE ST — Z /\ DQT/ [ZL‘ — K]+pzT(ZL‘)dZL'

wherepi.(z) are the marginal densities of the auxiliary equations Apglis the discounting factor
over [0,7]. This MD model allows accurate calibration to any smile gfthgolatility curve or
surface. Freedom when choosing the number of auxiliary teansaoffers great flexibility and
as a consequence of the pricing formula for European cdilsraaon to entire implied volatility
structures over several strike prices and maturities agsiple. \We now leave the single stock MD
and look at the multivariate case.

Suppose we wish to evaluate the price of an option which digpen several underlying assets
that each show a volatility smile. In order to price an opoich as this, using the conventional
MD method, we would begin by calibrating the volatility sacé of each of the stocks using the
single asset MD shown in the previous section. Once the digsaoh each of the stocks is found
a Monte Carlo simulation would be used to price the option g paths suitably discretized
according to the drift rate of each of the stocks and a difflasnatrix given by the local volatility.
Using an instantaneous correlation structptecalculated through a technique such as historical
analysis and supposed constant over time, the Monte Catloohevould proceed by simulating
the joint evolution of the stocks over the time gfid, 71|, . . ., [7,_1, 7,,] with a covariance matrix
componenti, j) over the time intervalr,,, 7,,.1] given by:

Zivzl )\ikagk(t)pirlfn (Si) ngvﬂ )‘jkajzk(t)pj%fn (S5) .
Sy Aikpik () S A (S

Thus the stocks in our basket will evolve according to

C(S;, Sj,t) = (8)

ch\le /\kuZQk (Tm)pfrlfn (Sz)
Z]kV=1 )\ikpgfn (Sz)

Si(Tm+1) = Si(Tm) + 1Si(Tin ) (Trg1 — Tin) + Si(Tim) Wrpir — Wi
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This scheme will certainly price an option on a basket of lstodHowever, by imposing that the
covariance of the multidimensional process to be of the fofr{8) we will be moving within a
given manifold of the possible local volatility structurdiscretization is also a costly procedure
for even the most simple of derivatives.

The multivariate mixture of densities (MVMD) technique ofigo et al. (2004) deals with
these problems by forming the marginal density of the maitate process in a completely new
fashion. Again suppose we wish to price an option writtentanunderlying assets;, ..., .S,
with marginal densitie$: and that we have calibrated a MD to each of their volatilityfaces
according to:

Z Xirpi® (), with Az > 0,Vk and Z g = 1

where eaclb; hasN; auxnlary equations given by
dz* = pagz®dt + o (t) 2R dW,.

For simplicity we’ll assume that each stock has the same eumbauxiliary equationsV. The
MVMD then proceeds as follows. The joint multivariate déyss defined as

N

pt(y) - Z Alig A2ig - - - )‘nznpgllln)<y>

11,02,...,4n=1

where the component densities are

yz (Y) %\/WH N

o t , ol
g = Inyy — Iny(0) — / i — 2 ds
0

and=(1)(¢) stands for the integrated variance covariance matrix whose) entry is

[ y(n...in)E(z’l...in)(t)1y(i1...z‘n)]
exp [— 5

with

t
EO) () 1y :/ 1,61 (8) T i (5) Pim s
0

andp;,, is the historical correlation betweeih and.sS,,.

In words this joint density function mixes all of the possibblatilities and combines them as
a convex combination while ensuring consistency with tlitgairmodels for the individual stocks.
The same historical correlations; are imposed on the densities at the constituent level but at
the level of the actual process the correlations are moreplem Because of the form of the
component volatilities pricing becomes immediate witls thew method. Rather than employing
a costly discretization scheme as was required for the cdioreal method, we can run a set of
single step Monte Carlo integrations for each combination . ., i,,).
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4. PRICING HIMALAYAN OPTIONSWITH MVMD

We will now apply the MVMD to the pricing of a Himalayan writieon stocks that show a smile
like volatility. Suppose we have a Himalayan written on twacks Sy, S, over two time periods
[to, t1] @and[t1, t5]. Assuming a deterministic risk free rate, the value of theélayan at any time
during the contract can be denoted by a generic pricing fomct(¢; 0, 7', A). The terminal payoff
of the Himalayan can then be written as:

G(T;0,T,A) = g(Si(t1), Sa(t1), Si(t2), S2(t2)) = g(S)

where the functiory : R} — R represents the payout given by one of the Himalayas deskribe
earlier. The initial price is then the discounted expectalde of the payout under the risk neutral
measurd). If the joint density function of the stockg S (¢1), S2(t1), S1(t2), So(t2)) is written as
p(S) we get:

G(0;0,T,A) = DorE[g(S1(t1), S2(t1), S1(t2), Sa(t2))]

~Dir [ g(S)p(s)as ©)
RY
Provided that the density functigni.S; (¢1), Sa(t1), S1(t2), S2(t2)) is known, this four dimensional
integral can be evaluated numerically via Monte Carlo meéshtm give the initial price of the
Himalayan.
Applying the MVMD to the Himalayan now becomes apparent. fige we have calibrated
the volatility surfaces of our two stocks according to thetomie:

Sl . ()\11, )\12) = (09,01), (0'11,0'12) = (04, O].)
52 . ()\21, )\22) == (08,02), (0'21,0'22) == (02, 015)

The density function in (9) will then become:

p(S1(t1), S2(t1), S1(ta), Sa(ta)) = f(S1(tr), S2(t1))h(Sm(t2))
= A dor [V (S1(tr), Sa(t))(Sm(t2)) + Azdar fPV(S1(t1), Sa(t1)) (S (t2))
+ Moo f P (S1 (1), Sa(t1))R(Sm(t2)) + M1 e fID(S1(t1), Sa(t1))h(Sm(ts)).

where thef () functions are as defined in the previous section/aiftl, (¢,)) is the distribution of
the remaining stock over the second period which will be auanecof lognormals determined from
the initial calibration. In this case the problem of incargiing the smile effect into the Himalayan
now becomes one of calculating four integrals over the fiesiga. Each of these integrals prices
a Himalayan written on two underlying stocks that follow gesdric Brownian motion with flat
volatility smiles. The theory allows for term structure te imcluded in the volatility, but in our
examples volatility will be kept constant. For the densfty’) the auxiliary stocks will have the
following dynamics over period one:

dSl(t) = ,uSl(t)dt + crliSl(t)dWl
dSQ (t) = /,LSQ (t)dt + UQjSQ (t)dW2
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The appropriate payoff will then be applied to the stocks @mel of them will be eliminated. This
determines the density(S,,) in each of the four integrals which is written in terms of ot
constituent densities. Thus the density function will bedmap of eight terms with the general
component being of the form

Midaj £ (S1(t1), Sa(t1) Amih™ (S (t2))
where over period two the auxiliary stoék, (¢) follows the dynamics
dS(t) = uSm(t)dt + i S (t)dW,,.

The correlation between the auxiliary stocks will be the s@sthe historical correlatignbe-
tween the stocks; and.S,. Accurate estimation of this parameter is crucial for pricHimalayas
with smile characteristics. In figure 1 we plot the initiaiger of various Himalayan options written
on the stockss; and S, over two equal time periods. In each plot the overall levehistorical
correlation is varied while the volatility of the individustocks remains unchanged. These prices
are calculated using one hundred thousand Monte Carlo .pathes risk free rate is fixed dt 1
and both stocks have an initial price df0. The plots firstly indicate that regardless of the level of
the volatility smile the locally floored Himalayan of type) (2as very little correlation sensitivity.
The globally floored Himalayan in (1) is long correlation faoth the flat and mild volatility smile.
This is an expected result since the globally floored vatigah option on the performance of the
overall basket rather than an option on the individual stodkowever when the smile becomes
more prominent the Himalayan shows no sensitivity to catreh. The Himalayan (6) with pe-
riodic performance is short correlation for all levels oé tholatility smile. This is unsurprising
since the structure is similar to a best of option on the tweolst and then an option on the single
remaining stock. Both of these are short correlation sa then will also be short correlation. In a
similar manner the Himalayan variant (5) also has shoretation for both the constant volatility
and smile like volatility.

It should be noted that when using the MVMD technique theaaarrelation betweef; and
S, will not be the same as the historical correlatjpwhich is used in the conventional method.
The covariance of the stocks is also different. Through thiidimensional Kolmogorov equation
it can be shown that in the MVMD regime the variance and cavexe of our stocks; andsS; are
given by:

Ch1(S1, 52, 1) = Zz’k/zl Apdaw oty (™) (S1(2), Sa(t))
B Zi,k’zlAlk}\Qk’p(kk/)(Sl(t)uSQ(t))

22 I )\1k/\2k/0'2 ,(t)p(kk/)(Sl (t), Sg(t))
Cp(S1, 52,t) = i 21 = e
Zk,k’:l )\1k)\2k/p( )(Sl(t>7 52(t))

and

ke Adaw a1 (B oz (8 pp*H) (S0 (1), Sa1)
012(S17 SQ, t) — 5 — .
PP A Ao DR (S (1), So(t))
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Comparing these with (7) and (8) we see that the variancdseaftbcks take on a new structure.
The variances of the two stocks are now fully dependent oh etiter in a manner which is
not seen in the conventional method. In fact it can be shownhttre variance and covariance
of the conventional method can be seen as an approximatiahddVVMD technique valid for
weakly correlated systems. In figure 2 we plot the conveatiprice and MVMD price of a type
(5) Himalayan written orb; and.S;. For low correlations the two prices coincide but for larger
correlations they diverge.
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Figure 1:Price against varying correlation for Himalayans of typg(fiashed line) and (2) in the left column and
type (5) (dashed line) and (6) in the right column. Componveddtilities are fixed a{o11,012) = (0.4,0.1) and
(021,022) = (0.2,0.15). The values vary. Top(A11, A12) = (1,0) and(Aa1, A22) = (1,0). Middle: (A1, A12) =
(09, 01) and(>\21, )\22) = (08, 02) Bottom: ()\11, )\12) = (05, 05) and(>\21, )\22) = (05, 05)
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Figure 2:Price against varying correlation for the conventionallmelt(dashed) and MVMD method. Component
volatilities are fixed ato1,012) = (0.4,0.1) and (21, 022) = (0.2,0.15). The A values vary. Left: (A1, \12) =
(0.9, 0.1) and()\gl, )\22) = (0.87 0.2). nght ()\11, )\12) = (0.99, 0.01) and()\gl, )\22) = (0.95, 005)

5. CONCLUSIONS

We have outlined the MVMD technique and shown how to apply tbimany variants of the Hi-
malayan option. The main advantage of this technique isitfaliows us to price options with
single step Monte Carlo calculations. This is a major improent over the the conventional mix-
ture of densities which relies on costly time discretiza@md simple correlations. A comparison
between the conventional MD and the MVMD has also validabtedtetical results. The price of
a Himalayan calculated using the two methods diverges fgefecorrelations. The MVMD also
allows accurate modeling of stock distribution. In par@igreater attention can be given to the
tails which is important because of the maximization preacekich is embedded into the payout
function. Our calculations illustrate the sensitivity oinhlayas to the historical correlation be-
tween stocks and they also show how the smile of individwalkst can change the behavior of the
option. Further work could include comparing this methodtimchastic volatility models which
can be used to price Himalayas and studying the fit of MVMD nhaderelation against actual
correlations.
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Abstract

The extent to which the money supply affects the aggregate lcalance demanded at a cer-
tain level of nominal income and interest rates is deterthimgethe interest-rate-elasticity and
stability of the money demand. An actuarial approach is stbjn this paper for dealing
with investors facing liquidity constraints and maintaigidifferent expectations about risks.
Under such circumstances, a level of surplus exists whickimises expected value. More-
over, when thalistorted probability principles introduced, theptimal liquidity demand is
expressed as\alue at Riskand thecomonotoniaependence structure determines the amount
of money demanded by the economy. As a consequence, the msieble the economy, the
greater the interest-rate-elasticity of the money demavidreover, for different parametric
characterisation of risksparketparameters are expressed as the weighted averagetofial

or individual estimations, in such a way that multiple equilibria of thersamy are possible.

1. INTRODUCTION

According to the Keynes’Bquidity preferenceproposition, the demand for cash balances is pos-
itively affected by the level of income and negatively afégt by the return offered by a class
of money substitutes, see Keynes (1935). The first part optbposition is a consequence of
the assumption that the amount of transactions is propattio the level of income. To explain
the effect of the interest rate, Keynes emphasises the ndéuef capital fluctuations in decision-
making. Thus, investors expecting interest rates to rigeathel fewer risk-free securities in order
to avoid capital losses — since the price of such instrumisrggpected to diminish in this case.
By contrast, when interest rates are expected to fall, morel® are demanded — in this way,
capital gains can be attained after the collapse of inteatéss. Therefore, fewer provisions are
maintained for high levels of the interest rate and viceaers

In macroeconomic analysis, the level of prices establisthesonnection betweemominal
magnitudes, expressed in monetary units, @ad quantities, which represent flows of goods and
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services. Accordinglyy = P -y, whereP, Y andy respectively denote the level of prices, the
nominal income and the real income. Let us additionally defy A/ the total money supply.
Therefore, the short-run monetary equilibrium is givenlgquantity equation

M = Py-l(r) =Y Il(r). (1)

The liquidity preferencefunction ((r) expresses the ratio between demanded cash balances and
nominal income. It is not likely to be constant but it may chearslowly over time. The inverse
ratio of the liquidity preference function is calleélocity of money

Any change in the money supply will require a change in one oremof the variables de-
termining the liquidity demand (i.e?, y or r) in order to reestablish the monetary equilibrium.
When prices are rigid for short-run fluctuations and the peatluct remain stable in short-terms,
the whole adjustment is performediiir). In addition, if the liquidity preference @bsolutei.e. if
investors are satisfied at a single level of the interesf'réite amount of money can change without
a change in either nominal income or interest rates. Unddr slicumstances, monetary policy is
useless for dealing with short-run fluctuations. The situreits different if prices are flexible and
liquidity preference isqon-absolute Then a monetary expansion produces a new equilibrium in-
volving a higher price for the same quantity, the higher tegponse the more inelastic the money
demand. In the short-run, production is encouraged untieprare reestablished at their original
level. In the long-run, new producers enter the market arslieg plants are expanded, as claimed
by Friedman (1970).

Under such circumstances, the efficacy of monetary polipedds on the degree of rigidity
of prices and the elasticity of the money demand, as well atherstability of liquidity prefer-
ence. There is a consensus among researchers about tlemexist a stable long-run relation-
ship, though fluctuations of cash balances in the short@oram unexplained. Episodes like the
missing moneyn the mid-seventies, the great velocity decline in theyeaighties, followed by
the expansion of narrow money in the mid-eighties, ontlecity puzzlef the mid-nineties, still
lack a satisfactory explanation, see Ball (2001) and B&l0g), Carpenter and Lange (2002) and
Teles and Zhou (2005). In accounting for such drawbackgntditerature has focused amcer-
tainty, which is supposed to have been incremented after 1980 dderégulation and financial
innovations, as in Atta-Mensah (2004), Baum et al. (2003yp€nter and Lange (2002), Choi and
Oh (2003) and Greiber and Lemke (2005). Deregulation anddiahinnovation are also given as
arguments to support the role of the opportunity cost in aoting for unexplained fluctuations,
see Ball (2002), Collins and Anderson (1998), Duca (200@¢ger and Wolters (2006) and Teles
and Zhou (2005). According to this view, a stable long-ruatrenship exists and movements of
the interest rate can explain all short-run episodes, agdsrthe right monetary aggregate is used.

In this paper, an extended model is proposed according tohallguidity preference is ex-
plicitly determined byuncertaintyandinformation First, the cash demand of a single represen-
tative investor is obtained. Investors are supposed tolfquility constraints and consequently,
in Section 2equity is treated as an additional liability. In additiohetbehaviour towards risk is
determined by the transformation of probabilities acaagdio aninformationalparameter. Then

! Absolutdiquidity preference corresponds to the case when theditjudlemand is perfectly elastic with respect
to the interest rate. According to Keynes, the degree otielgsdepends on how homogeneous expectations are,
where perfect elasticity is obtained when expected andahetlues are the same. In this case, money and risk-free
securities are perfect substitutes — since no capital gailtsses are expected.
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the expected return of the fund is maximised when the matheah@&xpectation of the residual
exposure (a measure of the cost of assuming bankruptcy ipduspportunity cost of capital is
minimised. In this way, | follow Dhaene et al. (2003) and Gaexts et al. (2005), who on these
terms develop a mechanism for capital allocation. Whenitapfor the aggregated surplus$ec-
tion 3, capital is supposed to be provided by a central authorifynancial intermediaries acting in
a competitive market, in such a way that a single interestisaiequired for lending. Hence the sit-
uation is similar to the case of a centralised conglomeriateloliting capital among subsidiaries,
as in Dhaene et al. (2003), Goovaerts et al. (2005) and Meaws&i (2006), and the opportunity
cost of money is related to the average return over a classoéysubstitutes. Thus, monetary ag-
gregates are determinants of liquidity preference in thdehd=inally, within a Gaussian setting,
the aggregate exposure is normally distributed and itgiibjas equal to the weighted average of
individual volatilities. Therefore, aggregation playsoterin the determination and stability of the
liquidity demand. The same results are obtained when margsks are exponentially and Pareto
distributed. The final remarks are givenSection 4

2. THE RATIONAL MONEY DEMAND

Since in frictionless markets the amount of cash maintafoegrecautionary purposes can be
modified at any time by lending and borrowing, managers wheimiae value demand no equity
— which is actually the proposition established by Modigiiand Miller (1958). However, averse-
to-risk customers are sensible to fluctuations and, as lsnipexbusiness activities of financial
intermediaries — which accordingly are said to djgaque— are not observed by outsiders, a
pressure is established to be perceived as default-freaggested by Merton (1997). In the model
developed by Tobin (1956), averse-to-risk investors shgwidity preference as behaviour towards
uncertainty. Assuming that risks follow Gaussian disttidms, a linear relationship is established
between the expected returns and volatilities of the pliwgaontaining a proportion of a certain
fund and a cash guarantee, which determines the sdtioentportfolios — in the sense that for
any combination outside the line, it is always possible tddoa new fund providing the same
expected return and a lower risk, or the same risk but a higgtern. The way preferences affect
portfolio decisions can then be analysed in the plane of @epereturns and volatilities, where
the indifference curves of risk-lovers should present aatieg slope, as long as such individuals
accept a lower expected return if there is a chance to obtlliti@nal gains. By contrast, averse-
to-risk investors do not take more risk unless they are cosgied by a greater expected return
and consequently, their indifference curves have possiwpes. Therefore, for any risk-aversion
profile, the optimal combination is determined by the (taraygpoint of) intersection between the
unique indifference curve representing preferences amtirth of efficient portfolios.

Let us analyse in the following how the Tobin’s model is aféetby the hypothesis afper-
fect competition, a case where risks belong to a general classobfpility distributions which
economic agents distort according to their information Endwledge when making decisions.
Moreover, liquidity constraints are faced when borrowimgl é&ending and managers have to ex-
pend effort to correctly assess prices. Let the parantetkanote the state of information of an
investor holding a mutual fund whose percentage returnpieesznted by the random varialb{e
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Because of the precautionary motive, a guaranteemaintained for a determined period of time
to avoid bankruptcy. In order to introduce in the model tHeafof liquidity constraints, equity is
regarded as an additional liability and the size of the guamis expressed as a proportion of the
level of incomeY’, such that, = Y -1, wherel represents the proportion of income assigned to the
non-risky asset. Hence, 1} denotes the risk-free interest rate, the percentage tagtian of the
total portfolio can be expressed¥s= X — [ — ry - [ and decisions are affected by thercentage
return on income:

poy = EolY] = (nox —1) — 1o - 1.

In giving a meaning to the informational paramefellet us stress the fact thakpectationsare
wanted to be modified. Then probability beliefs are transfet by a distortion parameter which is
supposed to be determined ioyormationandknowledgeand theproportional hazards distortion
is introduced, see Wang (1995):

E [X] = / z dFy x (1) = / Go x(z) dz = / Gx(z)? da.

Thecumulativeanddecumulativéalso known asurvival probability distributionfunctions have
been introducedfy x(z) = B[X <z] = 1 - F[X >z = 1 — Gyx(z). Whend > 1,
the expected value of risk is overestimated and it is untierated whend < 1, in this way
respectively accounting for the behaviourasierse-to-riskandrisk-loverinvestors.

Notice, however, that individuals react differently degeg on the sign of the capital return. In
fact, when a loss is suffered, cash is demanded to avoidltiefdnile in the case a gain is obtained
the surplus can be used to pay current liabilities or assigma@ew investments. Hence, decision-
makers mainly concerned about the speculative and thedresary motives respectively focus
on the termsy [(X — 1), ] andE, [(X +1)_]. Let us accordingly assume that capital decisions
are taken by risk managers who minimise bankruptcy and retyeaveragevalue of the insured
return:

E@[(X—Z)Jr] =~ EQ[X+]—7“97X'Z.

Since the termry x > 0 represents the absolute value of the marginal reductiomsured capital
gains produced when attracting an additional unit of eqitityan be regarded aspgemium for
solvency Hence the following expression is obtained for the expkptrcentage income:

Hoy = E@ [X+] — E@ [ (X + l)_] — (TQ + T@J() - 1.

Under such conditiongrecautionaryinvestors that maximise value minimise bankruptcy costs.
Applying Lagrange optimisation, we obtain that decisiorkera attract funds until the marginal
return of risk equals the total cost of capital:

0 B [(X 1) ]~ (o rox) = Gox () = (o + 75x) = 0

Equivalently, it can be said that investors stop demandiagewy at the level at which the marginal
expected gain in solvency equals its opportunity cost. Theptimal cash demand is given by:

lgvx(’f’o—i-’f’gvx) = G;}_X(To—l-’f’gvx). (2)
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From this expression, the money demand follows a decreasidg— as long as the distribu-
tion function describing uncertainty is continuous — conbus path, whatever the kind of risks
and distortions. The minimum and maximum levels of surphesraspectively demanded when
(7’0 + 7’97)() >1 and(TO + 7"97)() <0.

In practical applications, intermediaries face operai@nd administrative costs, at the time
that a premium over the risk-free interest rate is askeddiodihg in secondary markets. Hence,
the returnry + rp x can be interpreted asnetopportunity cost. Though environmental facts, such
as the perception of credit quality and gains in efficiencgdose of improvements on analysis
and administration, are expected to evolute on time, we egard them as softly modified —
and not a matter apeculation Also the risk attitude of managers is supposed to remairemor
or less unchanged. Therefore, the parametsrexpected to remain stable and consequently, as
long as the probability distribution of the random varialdles also stable, the capital decisions
of investors should remain more or less the same and the egoas a whole should behave
accordingly.

However, if probability distributions are allowed to evelen time — i.e. if the processes of
capital gains and losses are sbationary— so does the premium for solveney y. Actually,
this can be the case after a monetary expansion — which caerfemed by the central bank as
well as by the entrance of new investors — since as long aoptre extra money is used to buy
financial securities and the increment in demand is high ansigtent enough to induce the price
to risemore frequentlythe termky [(X — l)+} is pushed to increase. In a similar way, a monetary
contraction can press the insured return to decrease. ifiigdisen might in turn impel decision-
makers to actualise expectations and so the informatiarahpete) might be modified. But this
adjustment is supposed to be produced with a certain delaprtime is required for analysis
— while the opportunity cost may hastantaneouslaltered. Therefore, changes in the stock
of money may induce instabilitirom withinin secondary markets. Adjustments are performed
along a stable money demand relationship, though the pgavey be reinforced by structural
modifications once expectations are actualised.

3. SHORT-RUN MONETARY EQUILIBRIUM

In order to obtain an expression for the cash balance derdadmgl¢he whole economy, let us
assume that economic agents hold aggregate exposurestenael by the random variables
Xi,...,X,. Capital is supplied by a central authority at a single esgéerate- (or, equivalently,
secondary markets are regarded as competitive and finan@ainediaries ar@rice taker$ re-
lying on the informational parametérand the uncertainty introduced by therketportfolio X .
When different expectations are allowed among decisionemsakhe aggregate money demand is
given by:

.....

The second equality is a mathematical identity as long aprieess of capital gains and losses of
the market portfolio is described by themonotonic sunX = X7+ - -+X¢, whereGy, . g, —x =

(ZL G;i}_xi)_l denotes the distribution function of the comonotonic sunemvimarginal dis-
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tributions are given byGy, _x,, ..., G, —x,). Comonotonicitycharacterises an extreme case of
dependence, when no benefit can be obtained from diver&fical husprecautionaryinvestors
rely on the most pessimistic case, when the failure in anylsifirm spreads all over the market.

The dependence of the liquidity demand on the variabilitynobme becomes explicit in a
Gaussian setting. Let us assume in the following that inldiai exposures are distributed as Gaus-
sians with meang, .. ., u,, and volatilitiess, . . ., 0,,, while the contributions of individual ex-
posures to the market portfolio are given by the coefficients. ., \,,, with 0 < \; < 1 Vi, such
thatY; = \; - Y andY = Y, +--- +Y,. \Volatilities are expressed as proportions of the lev-
els of income and can be interpreted as the volatilities ém@int funds as well as the distorted
volatilities of the same Gaussian exposure — or some intéiatecase. Under such conditions,
the comonotonic sum is also a Gaussian random variable, lsaen@ et al. (2002), whose mean
and volatility are respectively given by:

M:i)‘i'ﬂi & U:i/\i'gi' (3
=1 =1

On these grounds, the weighted average mean and volagkiyritbe the uncertainty of the market
portfolio. In particular, high volatility may be induced laysingle group, as a negative externality
to more efficient companies and so the possibilitgarfitagionnaturally arises in the model. In the
same way, stability may be inherited by less efficient ingtihs when low volatility predominates.

Since thequantilefunction of a Gaussian random variable can be expresseanstef the
standard Normal distributiof (see Dhaene et al. (2002)), the short-run monetary equitrbis
described by the following equation:

M:?.[WT(T):7-[—(u+0©71(r)”. (4)

Therefore, the monetary equilibrium can be reestablisheohadifying the level of nominal in-
comeY’, the average returp, the market volatilityc or the interest rate. As already stated,
only r is expected to change in the short-run. Monitoring and amainduce investors to eventu-
ally incorporate the new regime of in decision making and possibly modify expectations, both
determinants of. ando.

The difference between the classic and the extended maadélecaoticed by comparingqua-
tions 1land4. Thus, while inEquation 1the elasticity of income with respect to the stock of money
exclusively depends on the interest rate through the liumteference function, ifequation 4
it is also affected by uncertainty. In addition,zfrepresents the level aéal income, thenew
short-run equilibrium can be written in real terms as:

M=Py-[—(p+o®'(r)].

Therefore, to stabilise the product it is also required totic the market risk. A proper monetary
policy should then consider a combination Bf 1, ¢ andr compatible with a given level of
income. The level of that preserves the monetary equilibrium for given values/ofY, u
andr can be regarded as tirlucedvolatility. A tentative criterion for monetary policy magen
involve the determination of the level of interest rateseimg) a given inflation and induced market

2The inverse probability distribution of the comonotoniasis given by the sum of the inverse marginal distribu-
tions, see Dhaene et al. (2002).
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volatility. Additionally, thenon-distortedvolatility can be estimated by thetandard deviatiorof
the random variabl& representing the capital losses of the market portfolio. @asure of the
degree of distortion performed by the market is thus deteechiby the difference between the
induced and the non-distorted volatility.

An alternative representation is obtained by considerinag individual exposures aexpo-
nentially distributed In this case, the comonotonic sum is also exponentialliridiged (see
Dhaene et al. (2002)), such thatdf, ..., 5, denote thanformational typesof investors, with
G; > 0Vi, and, as before\y, ..., A\, represent the marginal contributions to the aggregatemeco
with 0 < \; < 1 Vi, then the exponential parameter of the market portfolikessed as the
weighted average of the exponential parameters of margskal:

6= XNbi
i=1
Therefore, the liquidity preference function of the ecogasgiven by:
lg(r) = —pF - In(r), with 3> 0. (5)

Thus, the higher the parameterwhich within this framework completely characterise&rihe
more sensitive is liquidity preference to the cost of cdpila this way, uncertainty is explicitly
related to the monetary equilibrium and hence to the termquftlity — determined by the money
supply.

When marginal risks arBareto distributedthe survival probability distributions as estimated
by decision-makers are given by:

G_x,(z) = ZL‘_“LI', with «; >0 and z > 1.

The parameters;, ..., «, correspond to thetates of informatiomf investors. As long as they
agree on a single value the comonotonic sum is also Pareto distributed (see Dheteaie(2002))
and liquidity preference is given by:

lo(r)=n-r"° (6)

Under different expectations, the comonotonic sum is noesgarily Pareto distributed. However,
an estimation of the parametercan be found such thd&quation 6determines the monetary
equilibrium. In this case, the point interest-rate-etastiis constant and equal ta Many models
for the estimation of the money demand are supported on $kisnaption.

4. CONCLUSIONS

An extendedmodel is presented in this paper — also referred to adrtiperfect competition
model — to characterise the liquidity preference of investacing liquidity constraints. Under
such circumstances, a level of surplus exists that maxswakie and theational money demand
is determined by thguantilefunction — a measure of the probability accumulated intthleof
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the distribution function — of the random variable reprasenthe series of capital profits and
losses of the residual exposueg(iation 3. In this way, an equivalence is established between a
confidence level and the opportunity cost of capital and fiter@l amount of cash is determined
by the exchange of a sure return and a flow of probability. Aarmational parameter, affecting
the opportunity cost of money, represents the expectatibdscision makers. Averse-to-risk and
risk-lover investors respectively under and overestirttegecost of capital and so they respectively
demand more and less equity.

The importance attached to liquidity preference in maaroemic analysis is a consequence
of the fact that it determines the short-run monetary elopiilm of the economy. In the classic
approach, the amount of money which is compatible with giesels of nominal income and
interest rates can be obtained fréquation 1 see Friedman (1970). According to teetended
model presented in this paper, the aggregate money demahd etonomy is given by the sum
of the liquidity preferences of investors, mathematicalharacterised by theomonotonic sum
of individual exposures. The aggregate money demand isekpiessed as a Value-at-Risk but
referred to amarket portfoliowhich relies on the most pessimistic case, when no gain can be
obtained from diversification. In a Gaussian setting, them@aotonic sum is also a Gaussian
variable, whose volatility is equal to the weighted averafjmdividual volatilities Equation 4.

In this way, the classic model is extended allowing a cormedor risk.

Within theimperfect competitioframework, the total stock of monéy, the level of income
Y, the interest rate, the mean: and the market volatility- are all determinants of the short-run
monetary equilibriumEquation 4. Thus, as long as part of the funds available in the economy
are spent on capital assets, an adjustment in the opporteostr is expected in the short-run —
stimulated by the modification of the stochastic nature pfteagains — which is supposed it
stantaneouslwffect liquidity preference. In the medium-term, investoorrect their expectations
and so part of the adjustment may be performed thramfginmationalshocks affecting the aggre-
gate mean or the market volatility. An important featurehef mechanism is that the evolution of
risks, motivated by flows of funds, determines expectatamnot the opposite, though liquidity
preference might also be affected bpwaelyinformational shock.

As pointed out irSection 2liquidity preference is not affected in the same way by giains
and losses. Thus, while positive returns affect the oppasticost of money and so determine a
movement along a stable relationship, the precautionaity@e of decision makers depends on
negative returns, as does thieapeof the money demand (sé&guation 3. The first adjustment
is supposed to occur instantaneously, while the secondsoperformed gradually, for it takes
time for investors to internalise new market conditionsptactice, both decisions are related to
different markets. Accordingly, the cost of equityis represented by the average return over a
class of securities, other than cash, that can be regardedbasitutes to money. On the other
hand, the liquidity preference function depends on theesestf returns over a set of instruments
that are representative for the assumed exposures. Thearibbility showed by a representative
index of this class determines thearket volatilityo.

Finally, as stated iEquation 3 in a Gaussian setting the expected value of the markeghortf
and the market variability are respectively given by theghited average of individual means
and volatilities. Hence, the market uncertainty will be nigidetermined by a single institution
or sector, in the case it contributes more to the aggreggiesexe. Stability can be induced
in the whole market in this way. The same results are obtameeh individual exposures are
exponentiallyor Pareto distributed, for in both cases the risk parameters are ggtgd when
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accounting for market behaviour. Moreover, the model atsceqltiple equilibria, since different
combinations of the risk parameters may lead to the sameanehkracterisation.

The terms under which market shocks affect individual etqieans about risks will be deter-
mined by specific conditions, such as the state of aggragatstrictions in the access to credit,
the distribution of information within the market and thellskand knowledge of investors. Thus,
changes in the aggregate monetary stock may induce intearmesdito prefer bigger or more ef-
ficient companies —#ight to quality— a situation that may become more difficult according to
the availability of funds and possibly increment more tis&iness of less productive sectors of the
economy. In this way, within thenperfect competitioframework, a broader meaning is attached
to instability.
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AVERAGED BOND PRICES IN GENERALIZED COX-INGERSOLL-ROSS MO DEL
OF INTEREST RATES

Beata Stehikova'?!

fDepartment of Applied Mathematics and Statistics, Facoltiathematics, Physics and Infor-
matics, Comenius University, Mlynska dolina, BratislaSkvakia
Email: st ehl i kova@ nph. uni ba. sk

Abstract

In short rate interest models, the behaviour of the shoetigatjiven by a stochastic differen-
tial equation (in one-factor models) or a system of stoéhastferential equations (in multi-
factor models). Interest rates with different maturities determined by bond prices, which
are solutions of the parabolic partial differential egoati We consider the generalized Cox-
Ingersoll-Ross model, where the short rate is a sum of twed@esgjuare root processes, which
evolve independently. The bond price is a function of mataind of the level of each of the
components of the short rate. We do not observe all valuesseary to obtain a bond price.
Therefore, we propose the averaging of the bond prices. Wader the limiting distribution
of the short rate components, conditioned to have the sural ¢égihe observable short rate
level. In this way, we obtain the averaged bond prices, whighend only on maturity and
short rate. We prove that there is no one-factor model yigldihe same bond prices as with
the averaged values described above.

1. GENERALIZED COX-INGERSOLL-ROSS MODEL OF INTEREST RATES

Term structure models describe the dependence betweemmiéot maturity of a discount bond
and its present price which implies the interest rate. @uowotus short rate models are formulated
in terms of one or more stochastic differential equatiomgtie instanteneous interest ratéshort
rate). The bond prices, and hence the term structures ohteeest rates, are then obtained by
solving the partial differential equation.

In one-factor models, the process describing the shortisatgven by

dr = a(t,r)dt + B(t,r)dw, (1)

1The author was supported by the VEGA grant 1/3767/06.
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wherea(t,r) and (¢, r) are non-stochastic functions, andis a Wiener process. H(t,r) =
k(0 — 1), kK > 0, the process has the property of mean-reversion to the dev&lpopular class
of models is obtained by taking(¢,7) = or”. It includes the Vasicek model [= 0, see Vasicek
(1977)], and the Cox-Ingersoll-Ross (CIR) modeH: % see Cox et al. (1985)]; for a comparison
of models with different values foy, see e.g. Chan et al. (1992).

If the short rate evolves according to 1, then the discountibeith maturity?” has the price
P(t,r) depending on the timeand the current level of the short ratelt is given by the following
partial differential equation:

Y I (X0 @

P(T, r) =1, 3
where\ = \(¢,r) is the market price of risk. The interest rates are then nbthfrom the bond
prices byR(t,r) = —22L7)  see Kwok (1998).

For the specific ch0|ces of the market price of risk in Vasiae# CIR models, it is known that

the bond price can be written in closed form Ak, ) = A\y/r in the CIR model then the price of
the bond with time to maturity = 7" — ¢ has the form

P(1,7) = A(t)e B,

The functionsA(7) and B(r) satisfy the following system of ordinary differential edjoas
A(t) = KkHA(T)B(7)
. 1
B(r) = —(k+Xo)B— 5UQB(T)? +1 4)

with initial conditionsA(0) = 1, B(0) = 0, which can be solved analytically.

There are several possibilities of generalizing one-fagtodels, leading to multifactor mod-
els: making a parameter of the one-factor model stochasgc §tochastic volatility models An-
derson and Lund (1996), Fong and Vasicek (1991)), adding esfevant quantities (consol rate in
Brennan and Schwartz (1982), European interest rate inokC8amntamaria and Schwartz (2000),
Corzo Santamaria and Biscarri (2005)), composing the shtetby means of more components
(generalized CIR model in Cox et al. (1985), consol rate ardspread between the short rate and
consol rate in Schaefer and Schwartz (1984), Christiar@dR)), etc.

In the generalized CIR model, the short rais the sum of two independent Bessel square root
processes:

r=r1+rs (5)
d'f’l = /@1(91 — 7’1)dt + Ulﬁd’wl,
d'f’z = /@2(92 — 7’2)dt -+ UQ\/Ed’wz,
where the Wiener processes andw, are independent. If the market prices of risk corresponding
to r, andr, are taken to be,/r; and\,,/r3, then the bond price(r, r;, ;) has the form
w(T,11,73) = A(1)e” Br(Dn—Ba(7)r2. (6)

where A(1) = Ai(7)As(7) with Ay(7), Ax(7), Bi(7), Ba(7) the solutions of the systems of
ordinary differential equations (4) arising in the onetéaianodel, with the appropriate index.



Averaged bond prices in generalized Cox-Ingersoll-Rosgeghof interest rates 79

2. AVERAGING IN TWO-FACTOR MODELS

Since the components of the short rateandr, are not observable and the observable variable
is only their sumr, an interesting question refers to the properties of theageeof the two bond
prices conditioned on the given sumrefandr,. This is motivated by several papers: e.g. Fougue
et al. (2003) with an averaging in stochastic volatility retsdof stock prices, or Cotton et al. (2004)
with an averaging in stochastic volatility models of bonates (where the unobservable random
quantity is the volatility), which are used in the seriesaxgion of the prices. The asymptotic
distribution of the hidden process is used. It can be jusdtifi¢the processes have been evolving
for a sufficiently long time.

In the same way, we consider the limit distributions in thaegalized CIR model. It is well
known that the limit distribution of a Bessel square rootgess is a gamma distribution. Hence
the limit distribution of each of the two rates(i = 1, 2) in (5) is given by

b;
a;

() — —a;ir; .bi—1
fi(rs) F(bi)e T

wherea; = 20% b; = 2% for r; > 0 and zero otherwise. The limit density of conditioned on

o2

r1 + ro = ris equal to

_ Ji(r) fo(r — 1) _f1(7’1)f2(7“—7“1)
L N Y AT 7P V R )

where we used/(r) for the denominator of the fraction in order to simplify thetations in the
computations hereafter. The bond price (6) can be writtetlerims ofr, r, ; and the averaged
value is computed as

P(r,r)= / (T, ry,r — 1) f(ry, r)dr. (8)
0
In the same way, the averaged term structure is given by
" logm(r,ri,r—11)
P(r,r) = — . f(ry,r)dry. (9)
0

In Fig. 1 we give an example, by showing the term structureained by the generalized CIR
model and the averaged term structure computed as desetioed.

3. THE MAIN RESULT

In this paper, we study the following problem: is it possitddind functionsn and, see equation
(1), such that the bond prices are the same as the averaged fyjom a two-factor CIR model as
in (5).

We restrict ourselves to a specific class of processes:

e drift and volatility of the process, as well as the marketgwf risk are time-independent;
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Figure 1: Examples of term structures corresponding teewdfit pairs ofr; andr, such that
r1 + ro = 0.04. The averaged term structure is in bold.

e for a zero level of short rate, we require the volatility tozs¥o; this condition ensures the
nonnegativity of the short rate;

¢ the volatility parameters are different for the two processes forming the short ratden
two-factor CIR model.

We start with the following result.

Theorem 3.1 If we assume that the functions 5, and A only depend om (and not onr), that
the functionsy, 3, and\ are continuous in- = 0, that3(0) = 0, and thato;, # o5, then

(@) P(r,r) — A(r)asr — 0,

(b) &E(r,7) — A(r) asr — 0,

© E(r,r) = —A(r) (525 Bi(7) + 525 Balr) ) asr — 0,

(d) %275(7, r) is bounded in the neighbourhood:of 0.

For the proof, we need some properties of the Kummer conflogmtrgeometric functiongfi,
which are recalled in the following lemma, see Abramovitd &tegun (1972).

Lemma 3.2 The following equalities hold:

T(0)I(1 + ¢)

Fi(b,1+b —
T(1+b+c)' 10,1+ b+ ¢, —ar)

r
. / efaxxbfl(r o l‘)cdl‘ — Tb+c
0

a(a+1)22+”'

[ ] 1F1(a,b,z) = 1+%Z+ b(b—l—l)
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Proof of theorem 3.1:

Firstly, we rewrite bothV/ () and the density (1, ) by means of confluent hypergeometric func-
tions:

r) = /T f1(ry) fo(r — 71)dry

. Ogla% e—a27‘rb1+b2—1 F (b b + b _(a —a )T)
— F(bl n bg) 141\, Y1 25 1 2
and
1
flry,r) = Wfl(ﬁ)ﬁ(?“ —71) (10)
1 L(by+b) 1

— —(a1—a2)r1,.b1—1¢,. ba—1
1F1(b1, b1 + bay, — (a1 — ag)r) T(by)T(by) rbrtba—1 e =)

Now, we can prove the assertions of the theorem.

() Substituting (10) into the expression for the averagedliprice gives

P(r,r) = /OTW(T, ri,r — 1) f(ry,r)dr

1Fi(b1,b1 4 by, —((B1 — Bs) + (a1 — ag)r))

= AePr
1F1(by, by + bo, — (a1 — a2)r)

(11)

Since both denominator and numerator of the fraction in dverge to one as ap-
proaches zero, we have

lim P(T r) = A(T).

(b) We compute the derivative ¢t with respect tar:

8_P_ "or
or J, or

B A . . f (T, — 1) f(r, r)dr
= P(r,7) [(Z — Bz’f’) — (B — Ofo T — ) | (22)

— (7,1, — 1) f(ry,r)dry

whered = 24

The numerator of the fraction in (12) is positive for all> 0 and can be bounded from
above byr for w(r,r,r — 1) f(r1,7)dr;. Hence the fraction is positive and bounded from
above byr, which implies that it converges to zeroas— 0. Since we already know that
P(r,r) — A(r) for r — 0, we obtain from (12) that

I;Ln gf (1,7) = A(T).
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(c) Inthe computation of the derivati\%

oP " om

0
E: ; o (7' T, — Tl)f(ﬁ,r)+7T(T,T’1,7“—7“1)6—£(7’177“)d7“1 (13)

there are two derivatives which need further computal%@rand%. Straightforward calcu-
lations show that

g—:(T, r1, 7 —11) = —Bo(T)m(T, 1,7 — 1) (24)
and
of . filr) fo(r —m1)  filro)fo(r — 1),
AL A 77y R VT )
falr =) Jy Fus)flr — @ﬂ
f(rla T) [fg(r N rl) 07“ fl (S)fg(’f’ _ S)dS (15)
Noting that
;zgi; = —Q2 -+ (bg — 1)%,
equation (15) can be rewritten as
af o 1 fO o s fg r — s)ds
E(rlﬂﬂ)_f(rla?ﬂ)(b?_l) [T—Tl fo fl f2 T’—S)ds ] . (16)

Substituting (14) and (16) into (13) then yields (after rengement)

%—]: =P =By + (b — 1) (fof; n T(:lj“w’ Tl;’})(il(j’:);iclim
’ r r—ry)dr
)
Let us denote
X, = Jo 2w (o, =) fry, r)dr X, = o 7= fa(r) fa(r —ri)dr
fo (T ri,r —ry)f(ry,r)dry Jo filr) fo(r —r)dry
then,
‘2_1: — P(r,7) [~ By + (b — 1) (X, — X,)]. (18)

The expressions for botki; and X, can be written in terms of functiong:

lbl + b2 -1 1F1(b1,b1 + bg — ]_, —((Bl — Bg) + (a1 — ag)r))
ro oby—1 1F1(b1, b1 + by, —((By — Ba) + (a1 — ag)r))

and
151 + by — 11F1 (b, by + by — 1, —(ay — ag)r)

X p—
2 T bg-l 1F1(bl,bl+b2,—(a1 —CLQ)T’)

(20)
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Hence
OP  1bi+by—1[Gy Gs
X - X5=——=-"——" " |- - =
! 2 or r b2 —1 |:G2 G4 ’
where we denoted
G = 1Fi(b,by + by — 1, —((By — By) + (a1 — ap))r),
Go = 1F1(by, by + be, —((B1 — By) + (a1 — a2))r),
Gs = 1Fi(by,by + by — 1, —(a; — ag)r),
Gy = 1F1(by, by + ba, — (a1 — ag)r). (21)

As G>G4 — 1 asr — 0, we need to computé, G, — G2G5 to be able to compute the limit

of (17). Starting from

Gl = 1 bl n b2 — 1((31 — Bg) + ((ll — ag))r + O(T’),
b
Gy=1-— 5 i ; ((By — By) + (a1 — ag))r + o(r),
by
Gs - 1(a1 —ag)r + o(r),
b
G,=1- h —ii bg (aq — ag)r + o(r),
we have
by by
GGy — GG = -
1o Bt ’”( bl+bQ—1+b1+bQ)+0(T>’
and hence

b1+b2—1 1 bl bl O(T’)
X - X = Bi— By (-
U S RGN [( ! 2)( b1+bg—1+bl+b2)+

resulting in

b1+b2—1 bl bl
Dt BBy (- .
o1 B 2>( bl+bg—1+bl+bg)

Finally, we can compute the limit of (17) as follows:

llH(l)Xl — X2 =

P
hn% %(T, T) = hr% P(T, T) [—BQ + (b2 - 1) (Xl - Xz)]

b b
= A {—32 + (b +by = 1)(Br = By) (_61 +b12 7 blibg)}

(22)

(23)
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(d) We show that there is a finite limit c%%:'(r, r) asr — 0, from which the boundedness
follows.

From (17) we know that
o*P  oP OBy + (ba — 1) (X1 — X3)]
W_E[—BQJr(bg—l)(Xl—Xg)HP By

From the definition ofX; and X5 and from their limits, it follows that it is sufficient to show

the existence of the finite limit of- (1 F(r)) for r — 0+, where

F(r) = Gi(r) _ Gslr) (24)

With F(r) written by means of a series expansiBfr) = >, a,r*, the condition, = 0
is sufficient for boundedness of the tegn (1 F(r)) in the neighbourhood of = 0, which
holds for (24).

This leads us to the main result of this paper.

Theorem 3.3 Under the hypotheses of theorem 3.1, there is no one-fattereist rate model for
which the averaged bond prices satisfy the PDE up to the banynd= 0.

Proof. By taking the limitr — 0 in the PDE (2), we know from the previous theorem that for all
7>0

_A(T) + a(r =0)(—A(1)) (bl ii h, By(7) + b1 lji 5 BQ(T)) =0.

From this we calculate the value of the functieifor » = 0:

A(T) 1 A(T) by + by

ANERT BRI ADRBD ThED

a(r=0)=—

This means that )
A(T) bl + b2
_ =K 25
A(T) b1 Bi(7) + beBay(r) (25)

is a constant, independentaf

Now we use the fact that the functiof(r) in the two-factor CIR model can be written as
A(r) = Ai(1)As(7), where A;(7) and A,(7) are functions of the original CIR models, corre-
sponding to each of the equations ferandr,. Hence they satisfy

and so we get

A(r) _ A As(7) + Ai(1)As(r) _ Ai(r) | As(7)
A(7) A1(7)As(7) Ai(r)  As(7)
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The expression in (25) can be rewritten as
A(T) bl + b2 bl + b2
A(T) blBl (T) + b232(7-> blBl (7') + bQBQ(T) .

Sinceb, + by Is constant, the important part is the following fractiomigh has to be equal to some
constantk’:

K, =— = — (k161 B1(T) + K202 B2 (7))

/{19131 (T) + HQQQBQ(T)
blBl (T) + bQBQ(T)

= K.
It implies that
k101 B1(T) + Kol Ba (1) = K (b1 B1(T) + baBa(7))

and so
(/@1(91 — Kbl)Bl(T) = (sz — /@2(92)32(7')

for eachr > 0. This is only possible in two cases:
1. K10, — Kby = 0andKby — kebly = 0,
2. By(7) = ¢By(7) for some constant
Let us look at each of these possibilities.
1. The same constaiht appears in both conditions. From the first one welget Hg—fl and by

substituting the value af, = 2%91 we obtainK = =-. In the same way, from the second

1

o b

a

equality we obtaink’ = 22. However, we started from the hypothesis that: o2, and thus

we find a contradiction.

|

2. We recall the equations fd#; and B, from the CIR model:

If Bi(7) = cBy(7), it follows that
1 1
¢ | (K + Aao9)Ba(T) + 50232(7)2 — 1} = (k1 + Moy)By(7) + 50%31(7)2 —1

for all 7 > 0. By continuity, the equality also holds for the limit= 0+. Taking this limit,
we getc = 1, and hence the function8, () and By(7) coincide. We denote this function
by B(7). Subtracting the two equations in (26), we obtain:

[— (k1 + A1o1) + (k2 + Moy)] B(T) + [—%af + %ag] B*(1) =0

and dividing byB(7) (which is nonzero)
1
[—(k1 4+ A1o1) + (K2 + Aor)] — 5 l05 —ot] B(1) = 0.

Sinceo; # oy, this implies thatB(7) is a constant function, which is a contradiction.

Since both possibilities lead to a contradiction, the theors proved. ]
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4. CONCLUSION

In this paper, we considered two-factor Cox-Ingersoll-a®dels for interest rates and averaged
bond prices with respect to the asymptotic distributionheff short rate processes, conditioned
on the observable short rate level. Such averaged valudarazgons of the maturity and of the
short rate, just as the solutions of one-factor models. El@recstudied the question, whether there
would be a one-factor model yielding the same bond priceb@setobtained by averaging in the
two-factor Cox-Ingersoll-Ross model. We proved that thewaer is negative. In the future, we
plan to study this question also for other two-factor models
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