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PREFACE 
 
The fifth edition of the Contactforum “Actuarial and Financial Mathematics Day” attracted 
many participants, both researchers and practitioners. We welcomed this year several 
participants from abroad, indicating that this event is becoming to be known internationally. 
This contactforum aims to bring together young researchers, in particular Ph.D. students and 
Postdocs, working in the field of Financial and Actuarial Mathematics to discuss recent 
developments in the theory of mathematical finance and insurance and its application to 
current issues faced by the industry and to identify the substantive problems confronting 
academic researchers and finance professionals. We provide a forum for the discussion of 
advances within this field. In particular, we want to promote the exchange of ideas between 
practitioners and academics. 
Renowned practitioners were programmed as main speakers in order to give them a forum to 
talk about the needs, the problems, the hot topics in their fields. The invited paper about risk 
measures is included in these transactions. 
 
We thank all our speakers and discussants (Jasper Anderluh, Katrien Antonio, Griselda 
Deelstra, Henrik Jönsson, Nele Vandaele, Maarten Van Wieren, David Vyncke), for their 
enthusiasm and their interesting contributions which made this day a great success. We are 
also extremely grateful to our sponsors: the Royal Flemish Academy of Belgium for Science 
and Arts, and Scientific Research Network “Fundamental Methods and Techniques in 
Mathematics” of the Fund for Scientific Research - Flanders. They made it possible to spend 
the day in a very agreeable and inspiring environment. 
 
We plan a two day international event for the next meeting in 2008 with the focus on the 
interplay between finance and insurance. 
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INVITED TALK





CAPITAL ALLOCATION WITH RISK MEASURES

Andreas Tsanakas

Faculty of Actuarial Science and Insurance, Cass Business School, City University, 106 Bunhill
Row, London EC1Y 8TZ, UK.
Email: a.tsanakas.1@city.ac.uk

Abstract

This brief review paper covers the use of risk measures for assessing economic capital require-
ments and considers the problem of allocating aggregate capital to sub-portfolios.

1. INTRODUCTION

A risk measure is a function that assigns real numbers to random variables representing uncertain
pay-offs, e.g. insurance losses. The interpretation of a risk measure’s outcome depends on the
context in which it is used. Historically there have been three main areas of application of risk
measures:

• As representations of risk aversion in asset pricing models, with a leading paradigm the use
of the variance as a risk measure in Markowitz portfolio theory, see Markowitz (1952).

• As tools for the calculation of the insurance price corresponding to a risk. Under this in-
terpretation, risk measures are calledpremium calculation principles in the classic actuarial
literature, e.g. Goovaerts et al. (1984).

• As quantifiers of the economic capital that the holder of a particular portfolio or risks should
safely invest in e.g. Artzner et al. (1999).

This contribution is mainly concerned with the latter interpretation of risk measures.
Theeconomic or risk capital held by a (re)insurer corresponds to the level of safely invested

assets used to protect itself against unexpected volatility of its portfolio’s outcome. One has to
distinguish economic capital from regulatory capital, which is the minimum required economic
capital level as set by the regulator. In fact, much of the impetus for the use of risk measures in
the quantification of capital requirements comes from the area of regulating financial institutions.

3



4 A. Tsanakas

Banking supervision (Basel Committee on Banking Supervision) and, increasingly, insurance reg-
ulation (European Commission) have been promoting the development of companies’internal
models for modelling risk exposures. In that context, the application of a risk measure (most
prominentlyValue-at-Risk) on the modelled aggregate risk profile of the insurance company is
required.

Economic capital generally exceeds the minimum set by the regulator. Subject to that con-
straint, economic capital is determined so as to maximise performance metrics for the insurance
company, such as total shareholder return (Exley and Smith 2006). Such maximisation takes into
account two conflicting effects of economic capital (Hancock et al. 2001):

• An insurance company’s holding economic capital incurs costs for its shareholders, which
can be opportunity or frictional costs.

• Economic capital reduces the probability of default of the company as well as the severity
of such default on its policyholders. This enables the insurance company to obtain a better
rating of its financial strength and thereby attract more insurance business at higher prices.

Calculation of the optimal level of economic capital using such arguments is quite complicated
and depends on factors that are not always easy to quantify, such as frictional capital costs, and
on further constraints, such as the ability of an insurance company to raise capital in a particular
economic and regulatory environment.

We could however consider that there is a particular calibration of the (regulatory or other)
risk measure, which gives for the insurance company’s exposure a level of economic capital that
coincides with that actually held by the company. In that sense risk measures can be used to
interpret exogenously given economic capital amounts. Such interpretation can be in the context of
capital being set to achieve a target rating, often associated with a particular probability of default.
Discussion of economic capital in the context of risk measures should therefore be caveated as
beingex-post.

Finally, we note that the level of economic capital calculated by a risk measure may be a
notional amount, as the company will generally not invest all its surplus in risk-free assets. This
can be dealt with by absorbing the volatility of asset returns in the risk capital calculation itself.

2. DEFINITION AND EXAMPLES OF RISK MEASURES

We consider a set of risksX that the insurance company can be exposed to. The elementsX ∈ X
are random variables, representing losses at a fixed time horizon T . If under a particular state of
the worldω the variableX(ω) > 0 we will consider this to be a loss, while negative outcomes
will be considered as gains. For convenience it is assumed throughout that the return from risk-
free investment is 1 or alternatively that all losses inX are discounted at the risk-free rate. A risk
measureρ is then defined as a functional

ρ : X 7→ R. (1)

If X corresponds to the aggregate net risk exposure of an insurance company (i.e. the difference
between liabilities and assets, excluding economic capital) and economic capital corresponds to
ρ(X), then we assume that the company defaults whenX > ρ(X).
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In the terminology of Artzner et al. (1999) (and subject to some simplification), a risky position
X is called acceptable ifρ(X) < 0, implying that some capital may be released without endan-
gering the security of the holder ofX, while ρ(X) ≥ 0 means thatX is a non-acceptable position
and that some capital has to be added to it.

Some examples of simple risk measures proposed in the actuarial and financial literature (e.g.
Bühlmann (1970), Denuit et al. (2005)) are as follows.

Example 1 (Expected value principle)

ρ(X) = λE[X], λ ≥ 1. (2)

Besides its application in insurance pricing, where it represents a proportional loading, this risk
measure in essence underlies simple regulatory minimum requirements, such as the current EU
Solvency rules, which determine capital as a proportion of an exposure measure such as premium.

Example 2 (Standard deviation principle)

ρ(X) = E[X] + κσ[X], κ ≥ 0. (3)

In this case the loading is risk-sensitive, as it is a proportion of the standard deviation. This risk
measure is encountered in reinsurance pricing, while also relating to Markowitz portfolio theory.
In the context of economic capital, it is usually derived as an approximation to other risk measures,
with this approximation being accurate for the special caseof multivariate normal (more generally
elliptical) distributions (Embrechts et al. 2002).

Example 3 (Exponential Premium Principle)

ρ(X) =
1

a
ln E[eaX ], a > 0. (4)

The exponential premium principle is a very popular risk measure in the actuarial literature, e.g.
Gerber (1974). Part of the popularity stems from the fact that, in the classic ruin problem, it gives
the required level of premium associated with Kramer-Lundberg bounds for ruin probabilities. We
note that this risk measure has been recently considered in the finance literature under the name
‘entropic risk measure’ (Föllmer and Schied 2002b).

Example 4 (Value-at-Risk)

ρ(X) = VaRp(X) = F−1

X (p), p ∈ (0, 1), (5)

whereFX is the cumulative probability distribution ofX andF−1

X is its (pseudo-)inverse. VaRp(X)
is easily interpreted as the amount of capital that, when added to the riskX, limits the probability
of default to1 − p. Partly because of its intuitive attractiveness Value-at-Risk has become the
risk measure of choice for both banking and insurance regulators. For example, the UK regu-
latory regime for insurers uses VaR0.995(X) (Financial Services Authority), while a similar risk
measure has been be proposed in the context of the new EU-wideSolvency II regime (European
Commission).
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Example 5 (Expected Shortfall)

ρ(X) = ESp(X) =

∫

1

p

F−1

X (q)dq, p ∈ (0, 1). (6)

This risk measure, also known as Tail-(or Conditional-)Value-at-Risk, corresponds to the average
of all VaRps above the thresholdp. Hence it reflects both the probability and the severity of a
potential default. Expected shortfall has been proposed inthe literature as a risk measure correcting
some of the theoretical weaknesses of Value-at-Risk (Wirchand Hardy 1999). Subject to continuity
of FX at the threshold VaRp, Expected Shortfall coincides with theTail Conditional Expectation,
defined by

ρ(X) = E[X|X > F−1

X (p)]. (7)

Example 6 (Distortion risk measure)

ρ(X) = −

∫

0

−∞

(1 − g(1 − FX(x)))dx +

∫

∞

0

g(1 − FX(x))dx, (8)

whereg : [0, 1] 7→ [0, 1] is increasing and concave (Wang 1996). This risk measure canbe viewed
as an expectation under a distortion of the probability distribution effected by the functiong. It can
be easily shown that Expected Shortfall is a special case obtained by a bilinear distortion (Wirch
and Hardy 1999). Distortion risk measures can be viewed as Choquet integrals (Denneberg (1990),
Denneberg (1994)), which are extensively used in the economics of uncertainty, e.g. Schmeidler
(2003). An equivalent class of risk measures defined in the finance literature are known asspectral
risk measures (Acerbi 2002).

Example 7 (Distortion-exponential risk measure)

ρ(X) =
1

a
ln[ρ∗(e

aX)], (9)

whereρ∗ is a distortion risk measure. This risk measure was proposedin Tsanakas and Desli (2003)
and it combines the properties of the exponential premium principle with those of distortion risk
measures.

3. PROPERTIES OF RISK MEASURES

The literature is rich in discussions of the properties of alternative risk measures, as well as the
desirability of such properties, e.g. Goovaerts et al. (1984), Artzner et al. (1999), Goovaerts et al.
(2003), Denuit et al. (2005). In view of this, the current discussion is invariably selective.

An often required property of risk measures is that ofmonotonicity, stating

If X ≤ Y , thenρ(X) ≤ ρ(Y ). (10)

This reflects the obvious requirement that losses that are always higher should also attract a higher
capital requirement.
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A further appealing property is that oftranslation or cash invariance,

ρ(X + a) = ρ(X) + a, for a ∈ R. (11)

This postulates that adding a constant loss amount to a portfolio increases the required risk capital
by the same amount. We note that this has the implication that

ρ(X − ρ(X)) = ρ(X) − ρ(X) = 0, (12)

which, in conjunction with monotonicity, facilitates the interpretation ofρ(X) as the minimum
capital amount that has to be added toX in order to make it acceptable.

Two conceptually linked properties are the ones ofpositive homogeneity,

ρ(bX) = bρ(X), for b ≥ 0, (13)

andsubadditivity,
ρ(X + Y ) ≤ ρ(X) + ρ(Y ), for all X, Y ∈ X . (14)

Positive homogeneity postulates that a linear increase in the risk exposureX also implies linear
increase in risk. Subadditivity requires that the merging of risks should always yield a reduction in
rick capital due to diversification.

Risk measures satisfying the four properties of monotonicity, translation invariance, positive
homogeneity and subadditivity have become widely known ascoherent (Artzner et al. 1999). This
particular axiomatization, also proposed in an actuarial context (Denneberg (1990), Wang et al.
(1997)), has achieved near-canonical status in the world offinancial risk management. While
Value-at-Risk generally fails the subadditivity property, due to its disregard for the extreme tails of
distributions, part of its appeal to regulators and practitioners stems of its use as an approximation
to a coherent risk measure.

Nonetheless, coherent risk measures have also attracted criticism because of their insensitivity
to the aggregation of large positively dependent risks implied by the latter two properties, e.g.
Goovaerts et al. (2003). The weaker property ofconvexity has been proposed in the literature
(Föllmer and Schied 2002a), a property already discussed in Deprez and Gerber (1985). Convexity
requires that:

ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ), for all X, Y ∈ X andλ ∈ [0, 1]. (15)

Convexity, while retaining the diversification property, relaxes the requirement that a risk measure
must be insensitive to aggregation of large risks. It is noted that subadditivity is obtained by
combining convexity with positive homogeneity. Risk measures satisfying convexity and applying
increasing penalties for large risks have been proposed in Tsanakas and Desli (2003).

Risk measures produce an ordering of risks, in the sense thatρ(X) ≤ ρ(Y ) means thatX
is considered less risky thanY . One would wish that ordering to conform to standard economic
theory, i.e. to be consistent with widely accepted notions of stochastic order such as 1st and 2nd
order stochastic dominance and convex order, see Müller and Stoyan (2002), Denuit et al. (2005).
It has been shown that under some relatively mild technical conditions, risk measures that are
monotonic and convex produce such a consistent ordering of risks (Bäuerle and Müller 2006).
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A further key property relates to the dependence structure between risks under which the risk
measure becomesadditive

ρ(X + Y ) = ρ(X) + ρ(Y ), (16)

as this implies a situation where neither diversification credits nor aggregation penalties are as-
signed. In the context of subadditive risk measures,comonotonic additivity is a sensible require-
ment, as it postulates that no diversification is applied in the case of comonotonicity (the maximal
level of dependence between risks, e.g. Dhaene et al. (2002)). On the other hand, one could require
a risk measure to beindependent additive. If such a risk measure is also consistent with the stop-
loss or convex order, by the results of Dhaene and Goovaerts (1996), it is guaranteed to penalize
any positive dependence by being superadditive (i.e.ρ(X + Y ) ≥ ρ(X) + ρ(Y )) and reward any
negative dependence by being subadditive.

The risk measures defined above satisfy the following properties:

Expected value principle Monotonic, positive homogenous, additive for all dependence struc-
tures.

Standard deviation principle Translation invariant, positive homogenous, subadditive.

Exponential premium principle Monotonic, translation invariant, convex, independent additive.

Value-at-Risk Monotonic, translation invariant, positive homogenous, subadditive for joint-ellip-
tically distributed risks (Embrechts et al. 2002), comonotonic additive.

Expected Shortfall Monotonic, translation invariant, positive homogenous, subadditive, comono-
tonic additive.

Distortion risk measure Monotonic, translation invariant, positive homogenous, subadditive, co-
monotonic additive.

Distortion-exponential risk measure Monotonic, translation invariant, convex.

Finally we note that all risk measures discussed in this contribution arelaw invariant, meaning
thatρ(X) only depends on the distribution function ofX (Wang et al. (1997), Kusuoka (2001)).
This implies that two risks characterised by the same probability distribution would be allocated
the same amount of economic capital.

4. CONSTRUCTIONS AND REPRESENTATIONS OF RISK MEASURES

4.1. Indifference arguments

Economic theories of choice under risk seek to model the preferences of economic agents with re-
spect to uncertain pay-offs. They generally have representations in terms ofpreference functionals
V : −X 7→ R, in the sense that

−X is preferred to− Y ⇔ V (−X) ≥ V (−Y ). (17)



Capital allocation 9

(Note that the minus sign is applied because we have defined risk as losses, while preference
functionals are typically applied on pay-offs.)

Then a risk measure can be defined by assuming that the addition to initial wealthW of a
liability X and the corresponding capital amountρ(X) does not affect preferences (Bühlmann
1970)

V (W0 − X + ρ(X)) = V (W0). (18)

Often in this contextW0 = 0 is assumed for simplicity.
The leading paradigm of choice under risk is the von Neumann-Morgensternexpected utility

theory (Von Neumann and Morgenstern 1944), under which

V (W ) = E[u(W )], (19)

whereu is an increasing and concaveutility function. A popular choice of utility function is the
exponential utility

u(w) =
1

a

(

1 − e−aw
)

, a > 0. (20)

It can be easily seen that equations (18), (19) and (20) yieldthe exponential premium principle
defined in section 2.

An alternative theory is thedual theory of choice under risk (Yaari 1987), under which

V (W ) = −

∫

0

−∞

(1 − h(1 − FW (w)))dw +

∫

∞

0

h(1 − FW (w))dw, (21)

whereh : [0, 1] 7→ [0, 1] is increasing and convex. It can then be shown that the risk measure
obtained from (18) and (21) is a distortion risk measure withg(s) = 1−h(1−s). For the function

h(s) = 1 − (1 − s)
1

γ , γ > 1 (22)

the well knownproportional hazards transform with g(s) = s
1

γ is obtained (Wang 1996).
More detailed discussions of risk measures resulting from alternative theories of choice under

risk and references to the associated economics literatureare given in Tsanakas and Desli (2003),
Denuit et al. (2006).

It should also be noted that the construction of risk measures from economic theories of choice
must not necessarily be via indifference arguments. If a risk measure satisfies the convexity and
monotonicity properties, then by settingU(W ) = −ρ(−W ) we obtain a monotonic concave pref-
erence functional. The translation invariance property ofthe risk measure then makesU also
translation invariant. Hence we could consider convex riskmeasures as the subset of concave
preference functionals that satisfy the translation invariance property (subject to a minus sign).
Such preference functionals are sometimes calledmonetary utility functions, as their output can be
interpreted as being in units of money rather than of an abstract notion of satisfaction.

4.2. Axiomatic characterisations

An alternative approach to deriving risk measures is by fixing a set of properties that risk measures
should satisfy and then seeking an explicit functional representation.
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For example, coherent (i.e. monotonic, translation invariant, positive homogenous and subad-
ditive) risk measures can be represented by (Artzner et al. 1999)

ρ(X) = sup
P∈P

EP[X], (23)

whereP is a set of probability measures. By adding the comonotonic additivity property one gets
the more specific structure ofP = {P : P(A) ≤ v(A) for all setsA}, wherev is a submodular
set function known as a (Choquet) capacity (Denneberg 1994). The additional property of law
invariance enables writingv(A) = g(P0(A)) whereP0 is the objective probability measure andg

a concave distortion function (Wang et al. 1997). This finally yields a representation of coherent,
comonotonic additive, law invariant risk measures as distortion risk measures. An alternative route
towards this representation is given by Kusuoka (2001).

The probability measures inP have been termedgeneralized scenarios (Artzner et al. 1999)
with respect to which the worst case expected loss is considered. On the other hand, representations
such as (23) have been derived in the context of robust statistics (Huber 1981) and decision theory,
known as the multiple-priors model (Gilboa and Schmeidler 1989).

A related representation result for convex risk measures isderived in Föllmer and Schied
(2002a), while results for independent additive risk measures are given in Gerber and Goovaerts
(1981), Goovaerts et al. (2004).

4.3. Re-weighting probabilities

An intuitive construction of risk measures is by re-weighting the probability distribution of the
underlying risk

ρ(X) = E[Xζ(X)], (24)

whereζ is generally assumed to be an increasing function withE[ζ(X)] = 1 and representation
(24) could be viewed as an expectation under a change of measure. Representation (24) is particu-
larly convenient when risk measures and related functionals have to be evaluated by Monte-Carlo
simulation.

Many well-known risk measures can be obtained in this way. For example, making appropriate
assumptions onFX andg one can easily show that for distortion measures it is

ρ(X) = E[Xg′(1 − FX(X))]. (25)

On the other hand the exponential principle can be written as:

ρ(X) = E

[

X

∫

1

0

eγaX

E[eγaX ]
dγ

]

. (26)

The latter representation is sometimes called a ‘mixture ofEsscher principles’ and studied in more
generality in Gerber and Goovaerts (1981), Goovaerts et al.(2004).



Capital allocation 11

5. CAPITAL ALLOCATION

5.1. Problem definition

Often the requirement arises that the risk capital calculated for an insurance portfolio has to be
allocated to business units. There may be several reasons for such a capital allocation exercise, the
main ones being performance measurement / management and insurance pricing.

Capital allocation is not a trivial exercise, given that in general the risk measure used to set the
aggregate capital is not additive. In other words, if one hasan aggregate riskZ for the insurance
company, breaking down to sub-portfoliosX1, . . . , Xn, such that

Z =

n
∑

j=1

Xj, (27)

it generally is

ρ(Z) 6=

n
∑

j=1

ρ(Xj), (28)

due to diversification / aggregation issues.
The capital allocation problem then consists of finding constantsd1, . . . , dn such that

n
∑

j=1

dj = ρ(Z), (29)

where the allocated capital amountdi should in some way reflect the risk of sub-portfolioXi.
Early papers in the actuarial literature that deal with costallocation problems in insurance are
Bühlmann (1996) and Lemaire (1984), the former taking a risk theoretical view, while the later
examining alternative allocation methods from the perspective of cooperative game theory. A
specific application of cooperative game theory to risk capital allocation, including a survey of the
relevant literature, is Denault (2001).

5.2. Marginal cost approaches

Marginal cost approaches associate allocated capital to the impact that changes in the exposure to
sub-portfolios have on the aggregate capital. Denote for vector of weightsw ∈ [0, 1]n,

Zw =

n
∑

j=1

wjXj . (30)

Then the marginal cost of each sub-portfolio is given by

MC(Xi; Z) =
∂ρ(Zw)

∂wi

∣

∣

∣

∣

w=1

, (31)



12 A. Tsanakas

subject to appropriate differentiability assumptions. Ifthe risk measure is positive homogeneous,
then by Euler’s theorem we have that

n
∑

j=1

MC(Xj; Z) = ρ(Z) (32)

and we can hence use marginal costs directlydi = MC(Xi; Z) as the capital allocation.
If the risk measure is in addition subadditive then we have that (Aubin 1981):

di = MC(Xi; Z) ≤ ρ(Xi), (33)

i.e. the allocated capital amount is always lower than the stand-alone risk capital of the sub-
portfolio. This corresponds to the game theoretical concept of the core, in that the allocation
does not provide an incentive for splitting the aggregate portfolio. This requirement is consistent
with the subadditivity property, which postulates that there is always a benefit in pooling risks.

In the case that no such strong assumptions as positive homogeneity (and subadditivity) are
made with respect to the risk measure, marginal costs will ingeneral not yield an appropriate
allocation, as they will not add up to the aggregate risk. Cooperative game theory then provides an
alternative allocation method, based on theAumann-Shapley value (Aumann and Shapley 1974),
which can be viewed as a generalisation of marginal costs

AC(Xi, Z) =

∫

1

0

MC(Xi; γZ)dγ. (34)

It can easily be seen that if we setdi = AC(Xi, Z) then thedis add up toρ(Z) and that for
positive homogenous risk measures the Aumann-Shapley allocation reduces to marginal costs.
Early applications of the Aumann-Shapley value to cost allocation problems are Billera and Heath
(1982), Mirman and Tauman (2006).

For the examples of risk measures that were introduced in section 2, the following allocations
are obtained from marginal costs / Aumann-Shapley.

Example 8 (Expected value principle)

di = λE[Xi] (35)

Example 9 (Standard deviation principle)

di = E[Xi] + κ
Cov(Xi, Z)

σ[Z]
(36)

Example 10 (Exponential Premium Principle)

di =

∫

1

0

E[Xi exp(γaZ)]

E[exp(γaZ)]
dγ (37)

Example 11 (Value-at-Risk (Tasche 2004))

di = E[Xi|Z = VaRp(Z)] (38)

under suitable assumptions on the joint probability distribution of(Xi, Z).
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Example 12 (Expected Shortfall (Tasche 2004))

di = E[Xi|Z > VaRp(Z)], (39)

under suitable assumptions on the joint probability distribution of(Xi, Z).

Example 13 (Distortion risk measure (Tsanakas 2004))

di = E[Xig
′(1 − FZ(Z))] (40)

assuming representation (25) is valid.

Example 14 (Distortion-exponential Risk Measures)

di =

∫

1

0

E[Xi exp(γaZ)g′(1 − FZ(Z))]

E[exp(γaZ)g′(1 − FZ(Z))]
dγ (41)

5.3. Alternative approaches

While marginal cost-based approaches are well-established in the literature, there are a number of
alternative approaches to capital allocation. For example, we note that marginal costs generally de-
pend on the joint distribution of the individual sub-portfolio and the aggregate risk. In some cases
this dependence may not be desirable, for example when one tries to measure the performance of
sub-portfolios to allocate bonuses. In that case, a simpleproportional repartition of costs (Lemaire
1984) may be appropriate:

di = ρ(Xi)
ρ(Z)

∑n

j=1
ρ(Xj)

. (42)

Different issues emerge when the capital allocation is to beused for managing the performance
of the aggregate portfolio, as measured by a particular metric such as return-on-capital. Assume
thatX̂i, i = 1, . . . , n correspond to the liabilities from sub-portfolioi minus reserves correspond-
ing to those liabilities, such thatE[X̂i] = 0. We then have the breakdown

Xi = X̂i − pi, (43)

wherepi corresponds to the underwriting profit from the insurer’s sub-portfolio (e.g. line of busi-
ness)i, such that

∑n

j=1
X̂j = Ẑ and

∑n

j=1
pj = p. Then we define the return on capital for the

whole insurance portfolio by

RoC=
p

ρ(Ẑ)
. (44)

This is discussed in depth in Tasche (2004) for the case thatρ is a coherent risk measure. It is then
considered whether assessing the performance of sub-portfolios by

RoCi =
pi

di

, (45)
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wheredi represents capital allocated tôXi, provides the right incentives for optimizing perfor-
mance. It is shown that marginal costs is the unique allocation mechanism that satisfies this re-
quirement as set out in that paper. A closely related argument is that under the marginal cost alloca-
tion a portfolio balanced to optimize aggregate return on capital has the property that RoC= RoCi

for all i. While this produces a useful performance yardstick that can be used throughout the com-
pany, some care has to be taken when applying marginal cost methodologies. In particular, if the
marginal capital allocation to a sub-portfolio is small e.g. for reasons of diversification, the insurer
should be careful not to let that fact undermine underwriting standards. A proportional allocation
method could also be used for reference, to avoid that danger.

Often one may be interested in calculating capital allocations that are in some sense optimal.
For example, in Dhaene et al. (2005) capital allocations arecalculated such that a suitably defined
distance function between individual sub-portfolios and allocated capital levels is minimized. This
methodology reproduces many capital allocation methods found in the literature, while also con-
sidering the case that aggregate economic capital is exogenously given rather than calculated via
a risk measure. A different optimization approach to capital allocation is presented in Laeven and
Goovaerts (2003).

An alternative strand of the literature on capital allocation relates to the pricing of the policy-
holder deficit (also known as the ‘limited liability put option’), due to the insurer’s potential default
(Myers and Read 2001) and considers the marginal impact of subportfolios on the market price of
the deficit.
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Abstract

Monte Carlo simulation is currently the method of choice forthe pricing of callable derivatives
in LIBOR market models. Lately more and more papers are surfacing in which variance re-
duction methods are applied to the pricing of derivatives with early exercise features. We focus
on one of the conceptually easiest variance reduction methods, control variates. The basis of
our method is an upper bound of the callable contract in termsof plain vanilla contracts, which
is found to be a highly effective control variate. Several examples of callable LIBOR exotics
demonstrate the effectiveness and wide applicability of the method.

1. INTRODUCTION

Ever since the seminal papers of Carrière (1996), Tsitsiklis and Roy (2001) and Longstaff and
Schwartz (2001) regression methods have become increasingly popular for the valuation and risk
management of derivatives with early exercise features. Inparticular, for high-dimensional non-
Markovian models such as the LIBOR market model (LMM), the Longstaff-Schwartz algorithm
as it has become known is the method of choice. Though Monte Carlo methods are often criticised
for having slow convergence, one distinct advantage over lattice-based methods is that one can
appeal to a vast array of probabilistic methods in order to reduce the variance of the estimate of the
option price.

Since the introduction of Monte Carlo based methods in mathematical finance, variance re-
duction techniques, see e.g. Jäckel (2002) and Glasserman(2003) for an extensive overview, have
become commonplace when it comes to the valuation of European and path-dependent contracts.
It is only recently however that papers have surfaced in which these techniques are applied to

1Large parts of this research were carried out while the first author was writing his Master’s thesis at the Delft
University of Technology and the Modelling and Research department of Rabobank International, and the second
author was employed by the latter department and the Tinbergen Institute at the Erasmus University Rotterdam. We
thank seminar participants at Rabobank International and the 5th Actuarial and Financial Mathematics Day in Brussels.
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the valuation of Bermudan derivatives. Bolia et al. (2004) and Pietersz and Van Regenmortel
(2006) consider importance sampling, whereas Piterbarg (2004), Rasmussen (2005), Jensen and
Svenstrup (2005), Bolia and Juneja (2005) and Ehrlichman and Henderson (2006) have opted for
control variates.

From the numerical examples in these studies it seems that control variates allow for larger
orders of magnitude of variance reduction, though specific payoffs such as TARNs are well suited
for importance sampling, see Pietersz and Van Regenmortel (2006). Piterbarg (2004) was among
the first to suggest using control variates for the valuationof Bermudan derivatives in the LMM. By
constructing an analytically tractable Markovian approximation to the LMM it should be possible
to value the Bermudan payoff in a lattice and use this as a control variate. This has the advantage
that the approach is virtually payoff-independent, the only task left is to construct an approximate
model that is highly correlated with the original model.

Other attempts to use control variates have mainly been targeted at using control variates within
the original model. Within these papers we can recognise twodifferent types of approaches. On
the one hand, Rasmussen (2005) and Jensen and Svenstrup (2005) have opted for using plain
vanilla options as control variates, whereas both Bolia andJuneja (2005) and Ehrlichman and
Henderson (2006) try to approximate that martingale that renders the additive upper bound of
Rogers (2002), Haugh and Kogan (2004) and Andersen and Broadie (2004) equal to the true
value of the Bermudan option. Our approach builds on an observation by Jensen and Svenstrup
(2005), who noticed that one of the most effective control variates for a Bermudan swaption is
simply a cap. First and foremost we aim to provide an intuitive explanation for the effectivity of
such simple control variates, and to investigate how they can be improved upon. Second, of the
above papers only Jensen and Svenstrup have applied controlvariates to the pricing of Bermudan
interest rate derivatives, and have only considered the easiest example – the Bermudan swaption.
The method we consider will be applicable to all kinds of callable LIBOR exotics (CLEs), a term
coined by Piterbarg (2004).

This paper is structured as follows. Section 2 introduces some terminology and describes the
LMM and CLEs we consider later on. Section 3 reproduces the results that have been reported
by Jensen and Svenstrup and analyses why an upper bound on theCLE is a very effective control
variate. Section 4 describes how we can easily construct an upper bound for most CLEs and gives
two specific examples of this for a callable inverse floater and a snowball. Possible improvements
of this idea are also discussed. Finally, section 5 demonstrates the effectiveness of our method and
concludes.

2. LIBOR MARKET MODEL AND CALLABLE LIBOR EXOTICS

We start by introducing a tenor structureT = {Ti : i = 0, ..., N + 1} with daycount fractions over
the interval[Ti, Ti+1] given byαi. Next, define the forward LIBOR rate over this time interval as:

Li(t) =
1

αi

(

P (t, Ti)

P (t, Ti+1)
− 1

)

whereP (t, Ti) denotes the time-t price of a zero-coupon bond maturing atTi. We use the conven-
tion that theith LIBOR sets atTi and is paid atTi+1. Our numerical results have been generated
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in the lognormal LIBOR market model in the spot-LIBOR measure. The dynamics ofLi(t) for
0 ≤ t ≤ Ti in this setup are given by:

dLi(t) = µi(t, L(t))Li(t)dt + σi(t)Li(t)dWi(t) (1)

µi (t, L(t)) = σi(t)

i
∑

j=m(t)

αjLj(t)

1 + αjLj(t)
ρij(t)σj(t)

dWi(t)dWj(t) = ρijdt

whereσi is the volatility of Li, ρij is the instantaneous correlation betweenLi andLj andW1

throughWN are independent Brownian motions. Finally,m(t) = {k | Tk−1 ≤ t ≤ Tk}. In the
spot-LIBOR measure the discrete analogue of the money market account is the numeraire asset:

B(t) =
P
(

t, Tm(t)

)

∏m(t)

j=1

P (Tj−1, Tj)
.

We use the drift approximation of Hunter et al. (2001) to approximate the drift in (1).
Within this model we will be concerned with the valuation of callable or cancellable LIBOR

exotics (CLEs). Let us first consider a structured swap, where at a subset2 Tpay of T one ex-
changes structured coupon payments with floating payments.In particular, for a payer3 swap the
net cashflow payment atTi+1 is:

αi (Fi − Ci) . (2)

The holder of a receiver swap obviously receives the opposite payments. In our examples the
floating rateFi will be the LIBOR Li(Ti), though in principle this could be any rate which is
known at the payment dateTi+1. The most common example for the couponCi is Ci = K, which
amounts to a plain vanilla swap. Other examples we will use are an inverse floater coupon:

Ci = min (max (K − Li(Ti), f) , c) , (3)

wheref indicates a floor andc indicates a cap, and a snowball coupon:

Ci = min (max (Ci−1 + K − Li(Ti), f) , c) . (4)

The snowball coupon is similar to the inverse floater, the difference being its path-dependency. In
all examples we setc = ∞.

A callable version of this swap, or a callable LIBOR exotic, is a Bermudan option to enter
into the structured swap at a prespecified set of exercise datesTcall ⊆ T . Similarly, a cancellable
LIBOR exotic gives the right to cancel the swap at a certain set of dates. A parity relationship
between callable and cancellable swaps is:

Callable payer swap = Cancellable receiver swap + payer swap. (5)

When considering options we assume the option holder has theright to call or cancel. If however
the option seller has the right to call or cancel, the value tothe option holder is exactly the opposite
of the value to the option seller. Valuing cancellable options is therefore as easy or difficult as
valuing callable options. In the remainder of the paper we use the Longstaff-Schwartz algorithm,
see Longstaff and Schwartz (2001), to value the CLEs.

2In full generality both legs of the swap can have a different frequency and daycount conventions. For ease of
exposure we neglect this here.

3Analogous to vanilla swaps, a payer swap indicates that we are paying the structured coupon.
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3. PRELIMINARY RESULTS

The value of a callable payer swap, where the holder of the swap has the right to call, can be written
as an optimal stopping problem:

Callable swapP (0) = sup
τ∈τcall

B(0)E0

[

τ
∑

i=0

αi (Fi − Ci)

B(Ti+1)

]

. (6)

Adding a control variate to (6) which is also evaluated at theoptimal stopping timet yields:

Callable swapP (0) = sup
τ∈τcall

B(0)E0

[

τ
∑

i=0

αi (Fi − Ci)

B(Ti+1)
− βT (X(τ) − E0 [X(τ)])

]

(7)

whereX(t) represents a vector of time-t measurable products whose analytical expectation can be
evaluated relatively easily. The optional sampling theorem states that the value of (7) is the same
as that of (6). In principle we could evaluate the control variate at any other time. Rasmussen
(2005) has shown however that it is never optimal to sample the control variate after the optimal
exercise date. Though it is not easy to prove that it is never optimal to sample prior to this date, it
seems reasonable that the optimal stopping time is also the optimal sampling time of the control
variate, as we want the control variates to contain the same information as the payoff. It can be
shown that if:

β = var (X(τ))−1 cov

(

τ
∑

i=0

αi (Fi − C)

B(Ti+1)
, X(τ)

)

the variance of (7) is minimised. We will estimate the variance and covariances in this equation by
the sample (co)variances in the same simulation. The bias this introduces can be expected to be
negligible, see Jäckel (2002).

In this section we will reproduce the results from Jensen andSvenstrup, who found that a cap
is a highly effective control variate for a Bermudan swaption. We will try to explain why this is the
case. The parameters and settings we use are the ones used by Bender et al. (2005). Tenor dates
are chosen asTi = 0.5i, i = 0, ..., 12 (= N + 1). Daycount fractions are assumed to be constant
and equal to0.5. The volatility functions are time-homogeneous and generated by Rebonato’s
abcd-formula:

σi(t) = Φi

(

[a (Ti − t) + d] e−b(Ti−t) + c
)

. (8)

Instantaneous correlations between forward LIBORs are assumed to be:

ρij = exp

(

|j − i|

N − 2
ln ρ∞

)

(9)

for 2 ≤ i, j ≤ N . Values of the parameters in (8) and (9), as well as the initial forward LIBORs
are supplied in Table 1. The initial forward term structure is upward sloping, which more often
than not seems to be the case in interest rate markets.
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i 0 1 2 3 4 5 6 7 8 9 10 11
Li(0) 2.3% 2.5% 2.7% 2.7% 3.1% 3.1% 3.3% 3.4% 3.6% 3.6% 3.6% 3.8%
Φi − 15.3% 14.3% 14.0% 14.0% 13.9% 13.8% 13.7% 13.6% 13.5% 13.4% 13.2%

a b c d ρ∞
0.976 2.00 1.500 0.500 0.663

Table 1: Intital forward LIBORs, volatility and correlation parameters

The chosen example in this section is aT12 no-callT1 Bermudan swaption, which allows us
to enter into a swap maturing atT12 at datesT1 throughT11. In the notation of (2) this implies
that the floating rateFi = Li(Ti) andCi = K. We will look at an at-the-money (ATM) example,
an in-the-money (ITM) and an out-of-the-money (OTM) example. The fixed ratesK of these
Bermudan swaptions as well as their values are supplied in Table 2. The values in Table 2 have
been generated with 100 000 paths. The regressions in the Longstaff-Schwartz algorithm were
precomputed in 50 000 independent paths.

Payer Receiver
K Value Se K Value Se

OTM 2.22% 100.6 0.57 4.22% 15.64 0.13
ATM 3.22% 224.2 0.77 3.22% 139.3 0.44
ITM 4.22% 514.1 0.76 2.22% 508.0 0.68

Table 2: Bermudan swaption values and standard errors (in bp)

Let us define the variance reduction ratio byκ = se2/se2

CV . Variance reduction is obviously
not all we are interested in — if we have found a way to reduce the variance of our price estimate
by a factor of 2, but the Monte Carlo simulation including thecontrol variates takes twice as long
as the original simulation, the method is not very useful. Wetake into account the increase in
computational time by using the following quantity:

θ =
se2

se2

CV

·
τ

τCV

.

The scaling by the ratio ofτ to τCV , the times required for the simulation without and with control
variates, accounts for the fact that the computational timerequired and the inverse of the variance
of the price estimate scale roughly linearly with the numberof paths. Hence, when e.g.θ = 2 we
can obtain the same standard error with control variates in half the time compared to the situation
without control variates. In practice we noted that the additional time required to value the control
variates within the simulation is minor compared to the total simulation time. The reason for this
is that the lion’s share of computation time is spent in the construction of the paths. One final note
must be made on the computation ofθ: here we have neglected the cost of estimating the exercise
decision in a separate independent simulation.
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Figure 1:κ andθ for several control variates
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Figure 2:θ for several control variates in OTM/ATM/ITM payer (A) and receiver (B) Bermudan
swaption

In Figure 1 we have depicted the variance reduction factorκ and θ, which corrects for the
additional computational time that is required, when usingseveral plain vanilla products as control
variates for the ATM Bermudan payer swaption from Table 2. The swaptions in Figure 1 are the
European swaptions4 which are embedded in the Bermudan. The reason why only theT6-swaption
is included is that this was found to be the best-performing European swaption.

Even though using a swap or a European swaption shows significant improvements (up to
a θ of 15 for the best-performing European swaption), these single control variates are by far
outperformed by the cap. The correlation between the cap andthe Bermudan is 0.998, i.e. they
are almost perfectly correlated. As Jensen and Svenstrup already noted, using a cap alone leads
to a higher variance reduction than the best linear combination of all European swaptions which
are embedded in the Bermudan swaption. Lifting the restriction on the weights of the caplets (i.e.
using a vector of caplets instead of a cap as control variate)does not give large improvements
— when investigating the optimal weights of each caplet we noted they were quite close to 1,
indicating that the cap is close to optimal. Adding a swap to the cap seems to give the best results,
with a 30% improvement compared to the cap alone.

Figure 2 finally showsθ for all options from 2, when a cap — or a floor for the receiver
Bermudan — is used as the control variate. As expected, the more ITM the option is, the higher

4Theoretically speaking the exact price of a European swaption is not known in closed-form in the LMM. Several
highly accurate approximations do exist however, so that the bias induced hereby is negligible.
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θ will be as the payoff of the cap or floor will be very highly correlated with the payoff of the
underlying swap once we have decided to enter into it. The magnitude ofθ is clearly smaller for
the receiver Bermudan. What is causing this is actually the same thing that is allowing the cap to
work so well: the upward sloping term structure.

The reason why the cap works so well is the following. Once we have decided to enter into
the swap, the payments from the swap exactly match the payments of the cap, provided that the
floating payment is higher than the fixed. On the optimal exercise moment this is clearly the case.
The upward sloping term structure ensures that, on average,the future net exchanges of the payer
swap will be positive, so that the value of the cap and the swapwill be highly correlated. The initial
payments of the cap that occur prior to the exercise date willlower the correlation. However, the
contribution of these payments to the cap will most likely below, as otherwise it is likely that it
would have been optimal to exercise into the swap at an earlier date. For the receiver swaption
the upward sloping term structure works in exactly the opposite way. After we have decided to
exercise, the net value of future payments is expected to be lower than the first payment exchange.
As a consequence the probability of negative cash flows increases, leading to a lower correlation
of the floor and the structured swap we have exercised into.

Upon inspecting Figure 1 it may seem counterintuitive that the cap works so much better than
a single or all embedded European swaptions. A partial explanation for this is that in the extremes
(high or low interest rates), the cap perfectly mimics the payoff of the Bermudan swaption. Only
the European swaption which has the same start date as the Bermudan shares this property with
the cap. An affine combination of control variates will not satisfy this property, which explains
what we see in Figure 1.

Even though the swap rate is the main driver behind the exercise decision, a control variate
that mimics the payoff of the Bermudan swaption in the extremes will be a highly effective control
variate. We further explore this idea for more general CLEs in the next section.

4. EFFECTIVE CONTROL VARIATES FOR CLES

Supported by the results from the previous section, this section will initially focus on generalising
the method from the previous section to more general payoffs. In Section 4.2 we try to improve
upon this methodology.

4.1. Mimicking the cap

In Section 3 we noted that the cap was a very effective controlvariate for the Bermudan payer
swaption. Observe that the cap is constructed from the underlying swap by taking each forward
rate agreement (FRA) and flooring it at zero. This approach iseasily extended to other CLEs.
The only condition that the payoff has to satisfy is that eachfloored swaplet can be valued, or at
least approximated, in closed-form. We will apply this approach to the two CLEs we presented
in Section 2, the inverse floater and the snowball. In the remainder of this text we will refer to a
floored swaplet as a “caplet”, and to the sum of all floored swaplets as a “cap”.
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Flooring the payoff of the payer inverse floater (see (3) for the coupon) at zero yields:

[Li(Ti) − Ci]
+ =

{

2
[

Li(Ti) −
1

2
K
]

− [Li(Ti) − K + f ]+ f < 1

2
K

− [Li(Ti) − f ]+ f ≥ 1

2
K

The floored inverse floater coupon is a linear combination of caplets, which can be valued analyti-
cally. Hence we can use it as a control variate.

If we consider the payoff of a payer snowball (see (4) for the coupon), it is clear that the under-
lying swap is the same as that of the inverse floater, with the exception that the strikeK has now
been replaced by a path-dependent valueCi−1 +K. The easiest way to ensure that the “caplet” can
be valued analytically is to replace the path-dependent strike by a constant value, e.g. by assuming
that the forward term structure will be realised. Hereafterwe can follow the same procedure as
for the inverse floater. Alternatively, one could consider adynamic self-financing strategy where
at several points in time during the simulation we update thestrikes using all information known
at that time. The main drawback hereof is the strong increasein the required computational time.
Initial tests of such strategies showed that the increase incomputational time required does not out-
weigh the decrease in variance, so that we omit these resultshere. Similar findings were reported
in Jensen and Svenstrup (2005), where an approximate delta hedge of a Bermudan swaption was
considered as a control variate.

4.2. Using multiple control variates

Even though the results in the section 3 were quite impressive, there must be better control variates
than the “cap” alone. We can try to improve the variance reduction by altering the strike of the
“cap”, or even of the individual “caplets”. This is indeed confirmed by our investigations, which
are not reported here. For the Bermudan swaption, merely changing the strike of the cap/floor
increased the factorθ by approximately a factor of 2. In the case of the ATM Bermudanreceiver
swaption the optimal strike was even as far away as 75 bp from the original strike.

The question is how to determine the strikes that yield the highest correlation with the CLE. In
principle one could cache a small number of paths on which we minimise the variance with respect
to the free parameters. Subsequently we would generate a larger independent set of paths which
we then use to value the Bermudan.

Here we opt for a more pragmatic approach. Focusing on the Bermudan swaption, it is not
hard to see that a linear combination of caplets with different strikes can approximate the payoff of
a caplet with an unknown strike. In order to enable strikes tovary per maturity, we split the total
“cap” into smaller “caps” with different strikes and different caplet maturities. The total amount
of control variates must be large enough to have enough flexibility to approximate the unknown
optimal control variate, yet small enough to avoid multicollinearity between the control variates.

5. NUMERICAL RESULTS AND CONCLUSIONS

In this section we first investigate whether the general strategy outlined in Section 4.1 yields a
satisfactory variance reduction for callable inverse floaters and cancellable snowballs. Second, we
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investigate whether varying the strike of the suggested control variates is effective, as detailed in
Section 4.2.

The exercise or cancellation dates of both products will be the same as that of the Bermudan
swaption from Section 3, i.e. we can call or cancel on datesT1 throughT11. Similarly, the cash
flow dates areT2 throughT12. For the callable inverse floater we useK = 6.22% andf = 2%,
which ensures that the value of the underlying structured swap is almost zero. For the cancellable
snowball we takeC1 = 1.35% andK = 3.1%. We only consider ATM products in this section,
the contract parameters of the inverse floater and the snowball are chosen such that the underlying
swap is roughly ATM.

Bermudan swaption Callable inverse floater Cancellable snowball
Payer Receiver Payer Receiver Payer Receiver

Swap 6.7 2.1 5.9 2.7 n/a n/a
“Cap”5 190.4 8.9 109.8 9.7 7.9 18.8
3 “caps” 370.6 20.3 176.0 23.5 14.3 22.9
3×3 “subcaps” 520.3 62.0 337.8 63.8 26.1 40.5
11×3 “subcaps” 456.0 54.5 n/a n/a n/a n/a

Table 3:θ for various control variates applied to ATM CLEs

Table 3 shows the variance reduction ratioθ we found when using various control variates. The
row labelled “swap” reports the results found by using the underlying structured swap as a control
variate. The swap underlying the cancellable snowball cannot easily be valued analytically, so
that we omit this result from the table. The row labelled “cap” generalises the strategy for the
Bermudan swaption to the other CLEs, as outlined in Section 4.1. For the callable inverse floater
this clearly leads to a highly effective control variates for the payer case. This confirms our idea
that an upper bound of the underlying LIBOR exotic is a highlyeffective control variate.

For the snowball contract, the magnitude ofθ is still quite significant, though not as large
as for the other contracts. This is caused by the path-dependency of the snowball coupon. As
mentioned earlier, we replaced the previous coupon in (4) bya constant which was calculated by
assuming the forward term structure would be realised. Finally, it may seem odd to the reader that
the cancellable receiver snowball has a higherθ than the payer contract. This is however caused
by the parity relation mentioned in (5).

To investigate whether the suggestions from Section 4.2 areeffective, we considered three
strategies:

• Use three “caps”, where the strikes are equal toK, K − 1% andK + 1%;

• Split each “cap” into three smaller “subcaps”, the first spanning[T1, T3], the second spanning
[T4, T7] and the last spanning[T8, T11]; as control variates we use each of these “subcaps”
with strikes equal toK, K − 1% andK + 1%;

• Split the “cap” into 11 “caplets”, and use each of these as a control variates with strikes equal
to K, K − 1% andK + 1%. This leads to a total of 33 control variates.

5To be precise, by cap we here mean the payoff which is found by summing all swaplets, floored at zero.
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For all CLEs we see that replacing the original cap by a vectorof caps gives significantly better
results. In this way we manage to get high variance reductions for both the payer and the receiver
contracts. Note that theθ found when using a vector of “subcaps” is higher compared to using all
“caplets” with three different strikes. The reason for thisis that the marginal increase in variance
reduction is offset by the increase in computation time. We have therefore only reported these
results for the Bermudan swaption, and omitted them for the other CLEs.

Concluding, in this paper we have investigated the result noted by Jensen and Svenstrup that
a cap is a highly effective control variate when valuing a Bermudan payer swaption. We have
demonstrated how to generalise this idea to more general CLEs by constructing an upper bound
for the CLE, and using this as a control variate. This can leadto a large variance reduction, as
demonstrated in our numerical results. Benchmarking this method to other control variates, such
as the techniques of Bolia and Juneja (2005) and Ehrlichman and Henderson (2006) will be part
of further research.
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C. Hunter, P. Jäckel, and M. Joshi. Getting the drift.Risk, 14:81–84, July 2001.



Control Variates For Callable Libor Exotics 31
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Abstract

We study a stochastic model for a market with two tradeable assets where the price of the first
asset is implied by the value of the second one and the state ofa partially ‘hidden’ control
process. We derive a closed expression for the value of the first asset, as a function of the price
for the second and the most recent observation of the controlprocess. We show how the model
can be applied to EU markets for carbon emissions.

1. INTRODUCTION TO EU CARBON EMISSIONS MARKETS

The European Commission launched the European Climate Change Programme (ECCP) in June
2000 with the objective to identify, develop and implement the essential elements of an EU strategy
to implement the Kyoto Protocol. The Kyoto protocol to the United Nations Framework Conven-
tion on Climate Change assigns mandatory targets for the reduction of greenhouse gas emissions
to signatory nations. Carbon dioxide, a by-product of the combustion of fossil fuels, is the most
widely known type of greenhouse gas. All 25 EU countries simultaneously ratified the Kyoto
Protocol on 31 May 2002.

The European Union Emission Trading Scheme (EU ETS) is a significant part of the ECCP
and is currently the largest emissions trading scheme in theworld. To participate in the EU ETS,
members states must first submit a National Allocation Plan (NAP) for approval to the European
Commission. Selected carbon intensive installations suchas steel manufacturers, power stations
of above 20 MW capacity, cement mills, etc. receive free emission credits under the terms of this
NAP, enabling them to emit greenhouse gases up to the assigned tonnage.

Installations can bilaterally trade emission certificatesunder the EU ETS, in order to offset any
excess or shortage of carbon emission credits above NAP limits. About 12 000 installations within
the Union are covered by the EU ETS in a first phase (2005-2007), representing almost 50% of

33
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total carbon emissions. The EU ETS enables selected industries to reduce carbon emissions in
a cost effective manner, i.e. installations can opt for either reducing actual carbon emissions or
buying additional permits, for instance in case upgrading of the installation would turn out too
expensive. The NAP only imposes a cap on the total actual carbon emissions per member state.

Actual trading with EU ETS emission allowances commenced onJanuary 1st, 2005. By the
end of the same year, almost 400 million tonnes of carbon equivalent had been traded, representing
a turnover in excess of EUR 7 billion. First phase EU ETS carbon credits reached prices of EUR
30 per tonne at the high ending April 2006. Prices for first phase carbon credits then plummeted
to below EUR 10 per tonne in a few days beginning May 2006 afterEU figures on actual 2005
emission levels suggested emission caps to selected industries had been too generous to have a
significant impact. Emission caps for the second phase (2008-2012) are currently under review
because of the apparent overdimensioning of NAP levels in the first phase. Further reduction in
NAP levels is a likely alternative as well as the inclusion ofadditional industry sectors such as
aviation and transport or still other harmful greenhouse gas emissions like methane.

Selected industries included in the EU ETS can opt to postpone procurement of Phase I emis-
sion allowances until Phase II, provided a fine of EUR 40 per tonne is paid at the end of Phase I.
This rule actually constitutes a mechanism whereby prices for Phase I and Phase II emission cred-
its become linked in case actual Phase I emissions exceed NAPlevels. Prices for Phase I contracts
at the end of the first phase will be nonzero only if the EU zone is net short EU ETS carbon credits
for this phase. Industries can then opt for borrowing their short ETS position into the next phase at
a fixed cost of EUR 40 per tonne.

A net short position in the ETS trading zone thus imposes an identity on prices for Phase I
and Phase II emission allowances. In theory, Phase I prices must in that case be equal to Phase II
prices plus EUR 40 per tonne. If actual emissions turn out lower than NAP levels, Phase I credits
will be worthless at the end of Phase I and the relation with Phase II prices breaks down. Clearly,
Phase I emission allowances can be regarded as a derivative with Phase II credits as an underlying,
contingent on the net position of the EU ETS zone at the end of 2007. The ‘net position of the
zone’ is a variable that cannot be directly observed in the market and hence constitutes a source of
non-traded risk that renders the market incomplete.

The present note presents a mathematical model for incomplete markets that can be applied
to the context of the EU ETS. We depart from a diffusion model for Phase II prices to which we
add an auxiliary process that models the net position of the EU ETS zone on carbon emission
allowances. The price of Phase I contracts is conditional onthe value of Phase II allowances and
the sign of the auxiliary process. Experiences with price behaviour of carbon emission allowances
at ending April 2006 has illustrated that the sign, rather than the absolute value of the EU ETS
short position can already have a dramatic impact on prices for carbon credits in Phase I. The latter
observation suggests a link between Phase I prices and the sign of the short position.

The remainder of this paper is as follows. In Section 2 we briefly summarize the mean-variance
approach to the pricing and hedging of contingent claims. Wedescribe a mathematical model in
Section 3 for a more general incomplete market and we addressthe risk neutral pricing of a claim
whose value depends on the status of an assumed ‘hidden’ variable. This model is applied to the
EU ETS in Section 4 where the price for the Phase I contract price arises, becomes a derivative
defined in terms of the auxiliary variable modelling the net position of the EU ETS zone and the
Phase II contract price. The price of the Phase I contract takes a canonical form involving the
probability of the EU ETS zone being short at the end of Phase Iin 2007. Finally, we derive an
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analytical expression for the Laplace transform of this probability density function, a calculation
involving specific properties of an Azema type martingale.

We investigate mathematical properties of this probability density function in Section 4. The
results of a number of numerical surveys to the influence of the various parameters are discussed
and we present evidence for applicability of the model to actual carbon market data. We finish
formulating some conclusions and directives for further research.

2. PRICING AND HEDGING IN INCOMPLETE MARKETS

The issue of pricing and hedging when the market is incomplete is a fairly well studied concept
in mathematical finance. As one cannot talk about a single price when the market is no longer
complete, there are different methodologies with differing characteristics. One of the most popular
methods is to price and hedge using a quadratic risk-minimization criterion. For a short explana-
tion of this approach consider the following example. LetS denote the discounted price process
of the risky asset, which is a continuous semimartingale defined on a filtered probability space
(Ω,F , (Ft)0≤t≤T , P) satisfying usual assumptions. Letξ denote the number of holdings in the
risky asset andν denote the number of holdings in the bond, whose price is normalized to1. Then
the value of the portfolio at timet would be given byVt = ξtSt + νt. Let Ct := Vt −

∫ t

0
ξsdSs.

C is the cost process associated with the trading strategy andwould be a constant process if the
trading strategy were self-financing. LetH be a contingent claim. In a complete market setting
we would be able to find a pair(ξ, ν) such thatVT = H and thatC were a constant process, i.e.
H = C +

∫ T

0
ξsdSs. However, in an incomplete marketC would not necessarily be constant since

it is typically not possible to find a self-financing replicating strategy. This means one needs to
find an optimality criterion to decide on the hedging strategy to be employed. The optimal hedging
strategy in this context is defined to be the one that minimizes the remaining quadratic risk at each
time t, i.e.E[(CT −Ct)

2] → min. It is shown by several authors (see, e.g., Föllmer and Schweizer
(1991), Föllmer and Sondermann (1986), Monat and Stricker(1995) and Schweizer (1991)), un-
der different assumptions that, if one chooses this optimality criterion, the price of the contingent
claim is given by

Xt = E
∗[H|Ft],

whereE
∗ corresponds to the expectation operator under the so-called minimal martingale mea-

sure. The minimal martingale measure,P
∗ is an equivalent probability measure under whichS

is a martingale such that any martingale which was orthogonal to M remains a martingale under
P
∗ whereM is the martingale part in the canonical decomposition ofS. Moreover, the optimal

hedging strategŷξ is given by

ξt =
d〈V, S〉

d〈S〉
,

whereVt = E
∗[H|Ft]. This pricing and hedging methodology is clearly robust under equivalent

measure change. We refer the reader to Schweizer (1991), Föllmer and Schweizer (1991), and
Monat and Stricker (1995) for further details on the minimalmartingale measure and its usage in
financial markets.
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In the problem that will be analyzed in the next section, the incompleteness arise not only from
the fact that there are not enough traded securities to span all the uncertainty in the market but also
from the incomplete information. Mathematically speaking, this means the market’s information
is modelled by the filtration(Gt)0≤t≤T such thatGt ⊂ Ft for everyt where the inclusion is strict.
Under this restriction one could define the price of the contingent claim to be

Pt = E
∗[H|Gt].

Note that this is the optimal projection of the processX into the filtration(Gt)0≤t≤T so that the
distance between theF -price,X, andG-price,P , is minimized, again, in a quadratic sense. This
is the pricing methodology that we will use in the next section.

3. AN INCOMPLETE MARKET MODEL

We consider a market modelled on a filtered probability space(Ω,F , (Ft)0≤t≤T , P) where one of
the traded assetsSt : 0 ≤ t ≤ T follows a dynamics of the Merton type:

dSt = St(µ dt + σ dWt); St=0 = S0. (1)

DenoteFW
t : 0 ≤ t ≤ T as the natural filtration for the Wiener processWt : 0 ≤ t ≤ T , i.e.

FW
t = σ(Ws : 0 ≤ s ≤ t).

The market is featured of a control processθt : 0 ≤ t ≤ T , described by a Brownian Motion,
i.e. we have

dθt = dW̃t; θt=0 = θ0. (2)

whereW̃t : 0 ≤ t ≤ T is another Wiener process, independent ofWt : 0 ≤ t ≤ T . This SDE
has the obvious solutionθt = θ0 + W̃t : 0 ≤ t ≤ T . To ease the exposition of the results we
supposeθ0 = 0, but our result can be easily generalized to the setting whereθ0 is any real number.
DefineGt : 0 ≤ t ≤ T as the filtration obtained by augmenting the filtration(FW

t ) by the filtration
generated by the signs ofθ, i.eGt = FW

t ∨ σ(sign(θu) : 0 ≤ u ≤ t). The functionx → sign(x) is
defined assign(x) = 1 if x > 0 andsign(x) = −1 in casex ≤ 0.

The market trades a contingent claim at priceS0

t : 0 ≤ t ≤ T entailing the right on the time-T

payoffS0

T given by

S0

T =

{

f(ST ) if θT ≤ 0
0 if θT > 0

(3)

wherex → f(x) is bounded real function. The value of the derivative thus depends on the sign
of the control processθT at expiry. Our goal is to derive the derivative priceS0

t : 0 ≤ t ≤ T ,
conditioned on the information available from the asset price historySt : 0 ≤ t ≤ T and the sign
historysign(θt) : 0 ≤ t ≤ T of the control processθt.

To proceed with this calculation, first note that the dynamics (1) for St under the minimal
martingale measureP∗ becomes a martingale1 with the dynamics

dSt = Stσ dW ∗

t ; St=0 = S0. (4)

1
P
∗ is defined bydP

∗

dP
= exp

(

−µ

σ
WT − 1

2

(

µ

σ

)2

T
)

.
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whereW ∗
t : 0 ≤ t ≤ T is a Wiener process underP

∗.
The assumption that̃Wt is independent fromWt implies thatS andW̃ are orthogonal martin-

gales with respect to the filtrationG underP∗ by the definition of the minimal martingale measure.
Following the lines of argument in the preceding section, the time-t price for the derivativeS0

T can
be computed as

S0

t = E
∗[S0

T | Gt]. (5)

We then have

S0

t = E
∗[S0

T | Gt]

= E
∗[f(ST )I(θT ≤ 0) | Gt]

= E
∗[f(ST ) | Gt]E

∗[I(θT ≤ 0) | Gt]

= E
∗[f(ST ) | Gt]P

∗[θT ≤ 0 | Gt].

The remaining task is thus to compute the probabilityP
∗[θT ≤ 0 | Gt]. The filtrationGt appearing

in this expression is of a peculiar type, as it involves both theσ-algebraFW
t generated by the price

process,S, and theσ-algebraσ(sign(θu) : 0 ≤ u ≤ t). Direct computation of this parameter
seems a difficult task, and we turn to the Laplace transform ofθT = WT conditioned onGt which
we writeL(θT ). We have

L(θT )(λ) = E
∗[exp(λθT ) | Gt] (6)

for someλ > 0. By virtue of the martingale property for exponential Brownian motion, this
reduces to

L(θT )(λ) = E
∗[exp(λθT ) | Gt]

= E
∗[exp(λW̃T ) | Gt]

= E
∗[exp(λW̃T −

λ2T

2
) | Gt] exp(

λ2T

2
)

= E
∗[exp(λW̃t −

λ2t

2
) | Gt] exp(

λ2T

2
)

= E
∗[exp(λW̃t) | Gt] exp(

λ2

2
(T − t)).

We thus need to focus on the computation ofE
∗[exp(λW̃t) | Gt] only and this conditioning onGt

is generally referred to as the Azema martingale. We rewrite

E
∗[exp(λW̃t) | Gt] = E

∗[exp(λ|W̃t|sign(W̃t)) | Gt].

Now definegt = sup{s < t : W̃s = 0}, i.e.gt is the last instant preceding timet where the Wiener
processW̃t passed through the origin. Clearly,gt is measurable with respect toGt and it is known
thatMu := |Wu|/

√
u − gu obeys the law

√
2Z for Z exponentially distributed with unit parameter

(see Revuz and Yor (1994)). We now use this result to calculate (6). Observe that

E
∗[exp(λW̃t) | Gt] = E

∗[exp(λMt sign(W̃t)
√

t − gt) | Gt].

This conditional expectation can now be computed, as the lawof Mt is known. Let theGt-
measurable random variableAt be defined asAt = λ sign(W̃t)

√
t − gt, then note that

E
∗[exp(λW̃t) | Gt] =

∫

+∞

0

exp(At

√
2x − x) dx
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and we make the substitutionu :=
√

2x to arrive at

E
∗[exp(λW̃t) | Gt] =

∫

+∞

0

exp(At

√
2x − x) dx

=

∫

+∞

0

exp(Atu −
u2

2
) u du

=

∫

+∞

0

exp(−
1

2
(u − At)

2 +
A2

t

2
) u du

and upon substitutingy := u − At, we finally arrive at

E
∗[exp(λW̃t) | Gt] =

∫

+∞

−At

exp(−
1

2
y2 +

A2

t

2
) (y + At) du = 1 + At

√
2π exp(

A2

t

2
)N(At) (7)

in whichN(·) is the unit normal c.d.f., i.e.

N(x) :=

∫ x

−∞

e−
z
2

2

√
2π

dz. (8)

This finalizes the computation of the Laplace transform ofθT , which reads

L(θT )(λ) = exp(
λ2

2
(T − t))(1 + At

√
2π exp(

A2

t

2
)N(At)) (9)

for At = λ sign(W̃t)
√

t − gt. To summarize, we intend to compute the probabilityP
∗[θT ≤ 0 | Gt]

entering (5) via the Laplace transform ofθT . We only need to invert the Laplace transform in (9)
to find the distribution ofθT givenGt. By integrating this law over the negative half-plane, the
desired probabilityP∗[θT ≤ 0 | Gt] results.

4. APPLICATION TO EU CARBON EMISSIONS MARKETS

The theory out of the previous section is directly applicable to EU carbon emissions markets intro-
duced in Section 1. The traded assetSt : 0 ≤ t ≤ T in (1) describes the price process for the Phase
II emission allowances within the EU ETS in EUR per tonne. Thecontrol processθt : 0 ≤ t ≤ T

in (2) is interpreted as the net position of the entire EU ETS zone in tonne, relative to NAP lev-
els for all member states added together. Positive values for θt indicate that an excess amount of
emission certificates is available within the EU ETS perimeter at timet. Alternatively, negativeθt

values are associated to a net short situation in the EU ETS scheme at timet.
The filtrationGt is the version of the natural filtrationFW

t for the price processSt : 0 ≤ t ≤ T ,
augmented with the information contained in the sign of the net EU ETS positionsign(θt) at time
t. I.e,Gt only contains extra information on the net position on EU ETScertificates within the zone,
long or short, regardless of the magnitude of the respectiveexcess or shortage. Recent events have
indicated that price dynamics within the ETS framework are highly sensitive to market information
on just this net position, and the dramatic price-collapse of Phase I emission certificates serves as a
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direct example. In reality, one will observe the state of thecontrol prices, noteworthy its sign, any
time when the EU releases information on the realized carbonemissions or alternatively through
estimates provided by selected data providers in the EU carbon market, see PointCarbon (2006)
for instance.

The contingent claimS0

t : 0 ≤ t ≤ T mimics the price of the Phase I contract and the specific
choicef(x) = x + k reflects the regulatory condition that short positions in Phase I allowances
can be banked into Phase II at the price ofk = 40 EUR per tonne as explained in Section 1. The
definition for the Phase I payoff in (3) beautifully expresses the true nature of the Phase I contract
as a derivative on Phase II prices, conditional on the net position at the end of the first phase, here
denoted ast = T .

Equation
S0

t = E
∗[f(ST ) | Gt]P

∗[θT ≤ 0 | Gt] (10)

expresses the value of the Phase I contract in terms of the function f and the probability that the
ETS zone will end up short on carbon emission allowances at the end of the first phaset = T .
After making use of the martingale property forSt : 0 ≤ t ≤ T underP∗ and the explicit choice
for f , we obtain

S0

t = (St + k) P
∗[θT ≤ 0 | Gt].

Note that the probability of the ETS zone ending up short, appearing in the right hand side of (10),
can now be expressed as the fraction of Phase I EUA prices divided by the sum of Phase II prices
and the penalty ofk = 40 EUR per tonne, i.e.

Rt := P
∗[θT ≤ 0 | Gt] =

S0

t

(St + k)
.

The fractionRt is a known ratio in carbon markets, also referred to as the ‘Parson’s’ ratio Pow-
ernextCarbon (2006) and it naturally arises in the present model setting.

We finish by investigating the predictions of the present model for the probability for short
position in the ETS zone at the end of Phase I. The Laplace transform (9) can be inverted to yield
the conditional probability density forθT . Integrating this density over the negative reals results in
the desired quantity. Standard inverting of the Laplace transform gives

Rt = P
∗[θT ≤ 0 | Gt] =

1

2π

∫

0

−∞

dz

∫

+∞

−∞

dλ exp(−izλ)L(θT )(iλ). (11)

This integral can be calculated by numerical methods, resulting in model predictions for the Parson
ratioRt.

We have setT = 1 without loss of generality, whilet takes values in[0, T ] at the same time
whengt satisfies the inequality0 ≤ gt ≤ t. The next table states selected values forRt for different
values oft andgt given that the sign of the current position is positive. Thet values in the table
varies from 0.1 to 0.7, whilegt changes from 0.0 until thet value. Values forRt were computed
usingMathematica. The table indicates a 36% probability of the zone ending up short for t = 0.1
andgt = 0.0. This probability steadily decreases for largert values whilegt is kept constant.
This is an immediate consequence of the choice we made for thecontrol process: Since a Wiener
process is continuous ast approachesT with gt fixed, sign(Wt) converges tosign(WT ). Values
for Rt for t > 0.7 are more difficult to obtain due to accuracy problems arisingin the calculation
of (11).



40 U. Cetin and M. Verschuere

Rt(+) gt

t 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1 .34 .50
0.2 .28 .33 .50
0.3 .23 .26 .32 .50
0.4 .18 .21 .25 .31 .50
0.5 .15 .17 .19 .23 .29 .50
0.6 .11 .13 .15 .17 .21 .28 .50
0.7 .08 .09 .10 .12 .15 .18 .25 .50

We have repeated our numerical analysis of the ratio (11) fornegative current position and the
corresponding table is marked by(−). The conventions are similar as before and results of this
effort are summarized in the next table. We note thatRt values now reflect the obvious fact that it
is more likely for the zone ending up short if the most recent observation of the control processθt

pointed in the same direction. Values for the ratioRt are once more directly implied by the choice
for the control as a Wiener process. The table below expresses the fact that the lesser the remaining
time in Phase I defined byT − t, the less likely the net position of the ETS zone is going to change
still. The large values forRt for t = 0.7 are a direct consequence of this.

Rt(-) gt

t 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1 .66 .50
0.2 .72 .67 .50
0.3 .77 .74 .68 .50
0.4 .82 .79 .75 .69 .50
0.5 .85 .83 .81 .77 .71 .50
0.6 .89 .87 .85 .83 .79 .72 .50
0.7 .92 .91 .90 .88 .85 .82 .75 .50

The attentive reader will note from the above tables that respective probabilities forsign(θt) = ±1
add up to one. This is an immediate consequence of a symmetry present in the Laplace transform
of the probability density in (9) as function of the sign of the control process at timet. Characteri-
zation of this symmetry is left as an exercise, but eventually boils down to the symmetric nature of
marginal distributions for the Wiener process taken asθt : 0 ≤ t ≤ T .

5. CONCLUSIONS AND OUTLOOK

We studied a model for an incomplete market with two traded assets. The first asset arises as a
derivative on the second and is conditional on the sign of an exogenous control process. The price
of the second asset is assumed of the Merton type, while the control process is described by an
independent Wiener process. We derive an expression for theprice of the first asset under the
martingale measure minimizing the quadratic risk induced by the control process. This requires
computation of the minimal martingale measure for the prices process of the second asset.
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We have shown how our model can be applied to recently established markets for carbon emis-
sion allowances and calculated the price for a Phase I contract in terms of the probability of the
ETS zone being short at the end of Phase I in December 2007. Theprobability of for Phase I ETS
is referred to as the Parson ratio in most literature and it naturally arises in our model setting.

The price for Phase I emission allowances derived in this paper is strongly dependent on the
choice for the underlying control process. Selecting a Wiener process for the control leaves insuf-
ficient parameters for calibrating the model to historical data. We currently study a model leaving
more degrees of freedom in the control that can be studied in the context of stochastic filtering
theory. Results of this survey will be published elsewhere.

Acknowledgement: Michel Verschuere wishes to thank Ingard Moen for useful discussions and
proofreading of the manuscript.
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Abstract

This paper analyzes how model misspecification associated with both interest rateandmortal-
ity risk influences hedging decisions of a life insurer. For this purpose, diverse risk manage-
ment strategies which are risk-minimizing when model risk is ignored come into consideration.
We look at how model risk affects the distribution of the hedging errors associated with these
strategies. The analysis is based on endowment assurances which combine an investment ele-
ment together with a sum assured. Due to periodic premium contributions, i.e., the premium
payments stop in the case of an early death, a loan corresponding to the present value of the
expected delayed premium payments must be asked for by the insurer in order to implement
his hedging decisions. The effect of model risk on this borrowing decision is additionally
analyzed.

1. INTRODUCTION

Endowment assurance products are policies which pay out a sum of money on the death of the life
assured or at a specified date if the life assured survives theterm. This implies that the maturity
date and the payoff of the contracts are conditioned on the death time of the life insured.1 As com-
pensation, the insured provide periodic premiums until theperiod before the specified date, as long
as they are still alive. Obviously, these contracts containboth diversifiable mortality risk and trade-
able interest rate risk. Hence, risk management of the issued contracts is based on diversification
and hedging, i.e. trading on financial market.

In this paper, we analyze how model risk associated with boththe future evolution of the
interest rate and the insured’s future life expectancy affects the hedging decision of the insurer.

1About 75% of the life insurance contracts sold in Germany belong to this category.
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I.e. we consider market incompleteness caused by model misspecification associated with both the
interest rate and mortality risk. In the analysis of pricingand hedging the risk exposure to the issued
contracts, the insurance company makes model assumptions about the term structure of the interest
rate and the death distribution. However, the contract fairness and the hedging effectiveness depend
on the true interest rate dynamic and the true death distribution. Model misspecification related
to the interest rate risk has always been an issue for life insurers because they have difficulties in
date inputs to find an appropriate term structure model and reflect the true data generating interest
rate process perfectly. Mortality misspecification has attracted more and more attention recently. It
can be caused either by a false estimation of the insurer. A medical breakthrough or a catastrophe
can lead to an unexpected increase or decrease in life expectancy to a big extent. Moreover, it
can result from an intentional abuse of the insurer. For example, an insurer might overestimate
the death probability of a potential 70 year’s customer deliberately. By doing this, the (assumed)
expected period of annuity payment is shortened. Consequently, a higher annuity payment can be
offered in order to attract this customer. Due to the fact that it is most of time insurance brokers
who close contracts with customers and due to their own interests which might be inconsistent with
the insurance company’s, this kind of mortality misspecification is not an uncommon phenomenon.

Concerning the literature on model risk, there is an extensive analysis of financial market risk.
Without postulating completeness, we refer to the papers ofLyons (1995), Bergman et al. (1996),
El Karoui et al. (1998), Hobson (1998), and Mahayni (2003), just to quote a few. Certainly, there
are also papers dealing with different scenarios of mortality risk and/or stochastic death distribu-
tions, for instance, Milevsky and Promislow (2001), Blake et al. (2006), Ballotta and Haberman
(2006), and Gründl et al. (2006). A recent paper of Dahl and Møller (2006) considers the valuation
and hedging problems of life insurance contracts when the mortality intensity is affected by some
stochastic processes. However, to our knowledge, there areno papers which analyze the distribu-
tion of the hedging errors resulting from the combination ofboth. Therefore, in the present paper,
model risk is investigated by studying how it influences the distribution of hedging errors. Speak-
ing of hedging errors, we shall determine the underlying hedging strategies. Neglecting model
misspecification, the considered strategies are risk-minimizing. The concept of risk-minimizing
is firstly introduced in Föllmer and Sondermann (1986) and applied to the context of insurance
contracts in Møller (1998). In the considered contract specification, the most natural hedging
instruments are given by the corresponding set of zero coupon bonds. Apparently, a strategy con-
taining the entire term structure is an ideal case. In addition to this ideal case, we also consider
a more realistic case where the set of hedging instruments isrestricted, i.e. it is only possible to
hedge in a subset of bonds.

In order to initialize the above strategies, the insurer needs an amount corresponding to the ini-
tial contract value, while he only obtains the first periodicpremium at the beginning. Therefore, a
credit corresponding to the (assumed) expected discountedvalue of the delayed periodic premiums
should be taken by the insurer, because the initial contractvalue equals the (assumed) present value
of the entire periodic premiums. The insurance company trades with a simple selling strategy to
pay back this loan. Apparently, the effectiveness of this strategy in the liability side depends on
the model risk too.

It turns out that, independent of the model risk associated with the interest rates, an overes-
timation of the death probability yields a superhedge in themean, i.e. the hedger is on the safe
side on average. In the case that there is no misspecificationwith respect to the mortality risk,
the model risk concerning the interest rate has no impact on the mean of the hedging error. In
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contrast, the effect of interest rate misspecification on the variance is crucial, in particular if the set
of hedging instruments is restricted. In the case that thereis no misspecification with respect to the
interest rate dynamic, all strategies considered lead to the same variance level, independent of the
mortality. Therefore, the interactivity of both sources ofmodel risk is found to have a pronounced
effect on the risk management of the insurer.

The remaining of the paper is organized as follows. Section 2states the basic features of
the insurance contract considered. Section 3 introduces the hedging problem and optimal risk-
minimizing hedging strategies. In addition, we study how model misspecification affects the dis-
tribution of the hedging errors associated with the relevant strategies. Section 4 illustrates some
numerical results for the distributions of the hedging errors under different scenarios of model
misspecification. Section 5 concludes the paper.

2. PRODUCT DESCRIPTION

We consider an endowment assurance product with periodic premiumsA. In the following,T =
{t0, . . . , tN−1, tN} denotes a discrete set of equidistant reference dates where∆t = ti+1 − ti
gives the distance between two reference dates. The insuredpays, as long as he lives, a constant
periodic premiumA until the last reference datetN−1. In particular, if τx denotes the random
time of death of a live agedx, then the last premium is due at the random timets wheres :=
min {N − 1, n∗(τx)} andn∗(t) := max{j ∈ N0|tj < t}. The insured receives his payoff at the
next reference date after his last premium payment, i.e. he receives his payoff at random time
T := min

{

tN , tn∗(τx)+1

}

. We denote the endowment part of the contract specification by h and
assume that the insured receives at timeT the higher amount ofh and an insurance accountGT

which depends on his paid premiums. LetḠT denote the payoff atT , then

ḠT := max{h,GT}.

Notice that the contract specification implies that the benefits and contributions depend on the time
of deathτx. In the case thatGT = 0, we have a simple endowment contract which always pays
out h amount no matter how the death time of the customer evolves. In particular, the insurance
knows exactly its amount of liability but does not know when it is due. In contrast to the simple
endowment contract, we consider contracts which also give anominal capital guarantee, i.e., the
insured gets back his paid premiums accrued with an interestrate g (g ≥ 0), i.e. we use the
following convention

Ãti :=
i
∑

j=0

Aeg(ti−tj), Gti+1
= Ãtie

g∆t, i = 0, 1, . . . , N − 1.

To sum up the contract specification, it is convenient to notice that

ḠT =

N−1
∑

i=0

Ḡti+1
1{ti<τx≤ti+1}

+ ḠtN 1{τx>tN}. (1)
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3. HEDGING

First, the motivation and derivation of the hedging strategies is based on the value process of the
claim to be hedged.

Proposition 3.1 (Value Process) In our arbitrage-free model setup, the contract value at time
t ∈ [0, τx] is given by

Ct =

N−1
∑

j=n∗(t)+1

Ḡtj D(t, tj) tj−1|tj q̃x+t + ḠtN D(t, tN) tN−1
p̃x+t,

wheretN−1
p̃x+t denotes the assumed conditional probability that anx-aged life surviving timeT

given that he has survivedt, tj−1|tj q̃x+t the assumed conditional probability that anx–aged life
dies betweentj−1 andtj given that he has survived timet, andD(t, tj) the timet-market price of
a zero coupon bond with maturitytj2.

Proof. Using Equation (1) and standard theory of pricing by no arbitrage implies that the contract
value att (0 ≤ t < T ) is given by the expected discounted payoff under the martingale measure
P ∗, i.e.,

Ct = EP ∗ [e−
∫

T

t
ruduḠT |Ft].

The hedging possibility and effectiveness of a claim dependon the set of available hedging
instruments. With respect to the insurance contract under consideration, the most natural hedging
instruments are given by the set of zero coupon bonds with maturities t1, . . . , tN , i.e., by the set
{D(., t1), . . . , D(., tN)}. Thus, we consider the setΦ of hedging strategies which consist of these
bonds, i.e.,

Φ =

{

φ = (φ(1), . . . , φ(N))

∣

∣

∣

∣

∣

φ is trading strategy withV (φ) =
N
∑

j=1

φ(i)D(., ti)

}

.

However, due to liquidity constraints in general or transaction costs in particular, it is not possible
or convenient to use all bonds for the hedging purpose. This is modelled in the following by
restricting the class of strategiesΦ. The relevant subset is denoted byΨ ⊂ Φ. To simplify
the exposition, we propose that the assumed interest rate dynamic is given by a one-factor term
structure model and set

Ψ =
{

ψ ∈ Φ
∣

∣ψ = (0, . . . , 0, ψ(N−1), ψ(N))
}

.

Two comments are necessary. First, the assumption of a one-factor term structure model implies
that two bonds are enough to synthesize any bond with maturity {t1, . . . , tN}. However, the fol-
lowing discussion can easily be extended to a multi-factor term structure model. Second, as the
bonds cease to exist as time goes by, it is simply convenient to use the two bonds with the longest
time to maturity.

2We put tilde on the death/survival probabilities to denote the assumed ones. Similarly, later we put tilde on the
parameters describing term structure of the interest rate to denote the corresponding assumed ones.
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As a very conventional hedging criterion used in life insurance contracts, risk-minimizing is
applied here as well. Along the lines of Møller (1998), we derive the risk-minimizing hedging
strategy for both cases: when the entire term structure or when only the last two zero bonds are
used. They are simply denoted byφ andψ respectively. The motivation and derivation of the
hedging strategies are based on the value process of the claim to be hedged. Proposition 3.1
immediately motivates a duplication strategy on the set{t ≤ τx}. Prior to the death timeτx, the
contract value (at timet) can be synthesized by a trading strategy which consists of bonds with
maturitiesti (i = n∗(t) + 1, . . . , N). Assuming that the insurance company will not learn the
death of the customer until no further premiums are paid by the insured implies that the strategy
proceeds on the sett ∈]τx, T ] in the same way as on the sett ∈ [0, τx]. Notice that the number of
available instruments, i.e. the number of bonds, decreasesas time goes by. At timet, only bonds
with maturities later thann∗(t) are traded, i.e., the hedger buysḠti · ti−1|ti q̃x units ofD(t, ti) and
ḠtN tN−1

p̃x+t units ofD(t, tN). The advantage of using this strategy is that the strategy itself is not
dependent on the model assumptions of the interest rate.

Proposition 3.2 Let φ ∈ Φ denote a risk- (variance-)minimizing trading strategy with respect
to the set of trading strategiesΦ. Assume that the insurance company notices the death of the
customer only when no further premium is paid by the insured.If one additionally restricts the set
of admissible strategies to the ones which are independent of the term structure, then it holds:φ is
uniquely determined and fort ∈ [0, T ]

φ
(i)
t = 1{t≤ti} Ḡti ti−1|ti q̃x+t i = 1, · · · , N − 1

φ
(N)

t = ḠtN tN−1
p̃x+t.

Proof. Without the introduction of model risk it is easily seen thatVt0 and the contract valueCt0

according to Proposition 3.1 coincide. Thus, with Proposition 3.1 it follows thatφ is self–financing
in the mean. Since the stochastic interest rate risk can be eliminated by trading in all “natural” zero
coupon bonds, Møller’s (1998) results concerning the independence of mortality and market risk
can be adopted here. Since an endowment insurance is a mixture of pure endowment and term
insurance, the results immediately follow from Theorem 4.4and Theorem 4.9 of Møller (1998).

A one-factor short rate model is complete in two bonds, i.e. the availability of two bonds
with different maturities is enough to synthesize any further bond. Therefore, without postulating
the independence from the interest rate model, the variance-minimizing strategy is not defined
uniquely.

Proposition 3.3 Letψ denote the risk- (variance-)minimizing trading strategy with respect to the
set of trading strategiesΨ ⊂ Φ. Assuming that the insurance company notices the death of the
customer only when no further premiums are paid by the insured implies that fort ∈ [0, T ]

ψ
(N−1)

t =1{τx≥t}

(

1{t≤tN−2}

N−2
∑

i=n∗(t)+1

Ḡti ti−1|ti q̃x+t

D(t, ti)

D(t, tN−1)
λ

(i)

1
(t)

+ 1{t≤tN−1}
ḠtN−1 tN−2|tN−1

q̃x+t

)
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ψ
(N)

t =1{τx≥t}

(

1{t≤tN−2}

N−2
∑

i=n∗(t)+1

Ḡti ti−1|ti q̃x+t

D(t, ti)

D(t, tN)
λ

(i)

2
(t)

+ ḠtN (tN−1|tN q̃x+t + tN p̃x+t)

)

where λ(i)

1
(t) :=

σ̃ti(t) − σ̃tN (t)

σ̃tN−1
(t) − σ̃tN (t)

and λ
(i)

2
(t) :=

σ̃tN−1
(t) − σ̃ti(t)

σ̃tN−1
(t) − σ̃tN (t)

with σ̃t̄(t) denoting the assumed volatility of a zero coupon bond with maturity datet̄ at timet.

Proof. Notice that, in the setup of a one-factor short rate model, there is a self-financing strategy
φ̃(i) =

(

α(i), β(i)
)

with value processVt(φ̃
(i)) = α

(i)
t D(t, tN−1) + β(i)D(t, tN) = D(t, ti) for

i = 1, . . . , N . One can easily write down the strategy forD(·, ti), i.e.,

α
(i)
t =

D(t, ti)

D(t, tN−1)
λ

(i)

1
(t), β

(i)
t =

D(t, ti)

D(t, tN)
λ

(i)

2
(t)

whereλ(i)

1
(t) andλ(i)

2
(t) are given as above. Notice thatVt(φ̃

(i)) = D(t, ti) P -almost surely implies
Var[L∗

T (ψ)] = Var[L∗
T (φ)]. This together withΨ ⊂ Φ ends the proof.

Obviously, the strategy itself depends on the term structure model of the interest rate. Basically,
by using a one-factor interest model, the risk-minimizing strategy for the insurance contract can be
implemented in any subset of bonds with at least two elements. A generalization is straightforward
if a hedging instrument is added for every dimension of risk factor which is introduced to the short
rate model.

It is noticed that the implementation of the above strategies is based on taking a credit att0.
Since the initial value of the hedging strategies is given bythe expected value of the premium
inflows, the insurer must in fact borrow the amount

∑N−1

i=1
A ti p̃xD(t0, ti). The underpinning

strategy for this is to sellA ti p̃x bonds with maturityti (i = 1, . . . , tN−1). Under mortality risk,
it is not necessarily the case that the insurer achieves exactly the number of periodic premiums
which are necessary to pay back the credit. These discrepancies lead to extra costs. In particular,
these costs can be understood as a sequence of cash flows, i.e., the insurer has to pay backA ti p̃x

at each timeti (i = 1, . . . , tN−1), i.e. independent of whether the insured survives. Therefore, the
additional discounted costs associated with the above borrowing strategy are given by

N−1
∑

i=1

e−
∫ ti

0
ru duA

(

ti p̃x − 1{τx>ti}

)

. (2)

Proposition 3.4 (Expected total discounted hedging costs) Let L∗
T denote the discounted total

costs from both the asset and the liability side.φ (ψ) denotes the strategy given in Proposition 3.2
(3.3). Taking account of model risk,EP ∗ [L∗

T (φ)] andEP ∗ [L∗
T (ψ)] own the same value:

D(t0, tN)ḠtN (tNpx − tN p̃x) +

N−1
∑

j=1

(tj−1|tjqx − tj−1|tj q̃x)D(t0, tj)Ḡtj +

N−1
∑

i=1

D(t0, ti)A (ti p̃x − tipx) .
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Proof. This proposition is an immediate consequence of Propositions 3.1 (t = t0), in addition to
taking the expectation of the addition cost term given in Equation (2).

Notice that, independent of the set of bonds, the expected costs are the same. Furthermore,
independent of the model risk related to the interest rate, mortality misspecification determines
the sign of the expected value, i.e., that decides when a superhedge in the mean can be achieved.
When no mortality misspecification is available, the model risk related to the interest rate has no
impact on the expected value. When there exists mortality misspecification, the model risk related
to the interest rate will influence the size of the expected value. Therefore, the effect of model
risk associated with the interest rate depends on the mortality misspecification. However, when
it comes to the analysis of the variance, model risk associated with the interest rate has a more
pronounced effect than mortality misspecification.

Proposition 3.5 (Additional variance) It holds

VarP ∗ [L∗

T (ψ)] = VarP ∗ [L∗

T (φ)] + AVT

withAVT = 0 when there exists no model risk related to the interest rate,otherwise

AVT = tNpxEP ∗

[

(I∗tN (ψ) − I∗tN (φ))2
]

+

N−1
∑

j=0

tj |tj+1
qxEP ∗

[

(I∗tj+1
(ψ) − I∗tj+1

(φ))2

]

> 0,

whereI∗ denotes the discounted gains process, i.e.

I∗t (φ) :=
N
∑

i=1

∫ t

0

φ(i)
u dD

∗(u, ti).

Proof. The proof is given in Chen and Mahayani (2007).
It should be emphasized that the effect of mortality misspecification depends on the model risk

related to the interest rate. If there exists no interest rate misspecification, mortality misspecifi-
cation plays no role in the additional variance. However, ifthere exists model risk related to the
interest rate, an additional variance part results always when the restricted subset of zero coupon
bonds are used as hedging instruments.

As stated in the introduction, mortality misspecification can be caused by a deliberate use of
the insurance company for certain purposes, e.g. safety reasons. I.e., a deviation of the assumed
mortality from the true one is generated by a shift in the parameterx which leads to a shift in the
life expectancy. For this purpose, we lettpx̃ andtqx̃ denote the assumed probabilitiestp̃x andtq̃x.

Proposition 3.6 For any realistic death/survival probability which satisfies

∂ tpx

∂x
< 0, and

∂u|tqx+v

∂x
> 0, v ≤ u < t,

we obtain that

(i) ∂EP∗ [L∗

T
]

∂ x̃
< 0. Furthermore, an overestimation of the death probability (an underestimation

of the survival probability) leads to a superhedge in the mean, i.e.,EP ∗ [L∗
T ] ≤ 0.

(ii) The additional variance given in Proposition 3.5 is increasing inx̃.

Proof. Proof is given in Chen and Mahayani (2007).
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contract parameter interest rate parameter mortality parameter
(Vasic̆ek model) (Makeham)

g = 0.05 initial spot rate = 0.05
h = 20 673.6 (GtN = 35 694.6) spot rate volatility = 0.03 H = 0.0005075787
tN = 30 (years) speed of mean reversion = 0.18K = 0.000039342435
x = 40,A = 500 long run mean = 0.07 c = 1.10291509

Table 1:Basic (assumed) model parameter.

4. ILLUSTRATION OF RESULTS

To illustrate the results of the last sections, we use a one-factor Vasic̆ek-type model framework to
describe the financial market risk and a death distribution according to Makeham. The Vasic̆ek-
model implies that the volatilityσt̄(t) of a zero coupon bond with maturitȳt is σt̄(t) = σ̄

κ
(1 −

exp{−κ(t̄ − t)}) whereκ andσ̄ are non-negative parameters.σ̄ is the volatility of the short rate
andκ the speed factor of mean reversion. The death distribution according to Makeham is depicted
as follows

tp̃x = exp

{

−

∫ t

0

µx+s ds

}

, (3)

µx+t := H +Kcx+t.

As a benchmark case, we use a parameter constellation along the lines of Delbaen (1990) which
is given in Table 1. We introduce the model risk by taking intoaccount that the model parameters
which are used to construct the hedging strategies may deviate from the true ones. Concerning the
death distribution, we take Makeham hazard rate as an example and concentrate on the mortality
misspecifiction caused by the shift in age.

4.1. Expected total costs

Figure 1 demonstrates how the death and survival probability, i.e., tj−1|tjqx changes with the age
x. With the change ofx, the death and survival probability demonstrate a parallelshift. If the
true age of the customer is 40, then an assumed age of 50 leads to an overestimation of the death
probability and an assumed age of 30 results in an underestimation of the death probability. Of
course the survival probability andtpx has exactly a reversed trend.

How the expected discounted total costs from both asset and liability side change with the
assumed agẽx is depicted in Figure 2. It is noticed that, for the given parameters, the expected
discounted total cost exhibits a negative relation inx̃. The higherx̃, the lower the expected to-
tal costs. It is observed that, independent of the set of hedging instruments (bonds), the hedger
achieves profits in mean (negative expected discounted cost) if he overestimates the death proba-
bilities.3 Hence, negative expected discounted costs result when truex is smaller than the assumed

3This result is opposite to the result in pure endowment insurance contracts, where a negative expected discounted
cost is achieved when an overestimation of the survival probability exists.
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Figure 1: tj−1|tjqx for x = 30, 40, 50. The
other parameters are given in Table 1.
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Figure 2:Expected cost for̃x = 30, 35, 40, 45,
50 with the realx = 40. The other parameters
are given in Table 1.

one. Converse effects are observed when the insurer underestimates the death probability. Here,
a real age of 40 is taken and it is observed that forx̃ = 45, 50, the expected costs have negative
values (lower two curves), and forx̃ = 30, 35, the expected costs exhibit positive values. When the
true age coincides with the assumed one, the considered strategy is mean-self-financing because
the expected discounted cost equals zero.

4.2. Variance Difference

In contrast to the expected total costs, the distribution ofthe costs depends on the set of hedging
instruments. This subsection attempts to illustrate how the variance difference depends on the
model risk. Assuming that the short rate is driven by a one-factor Vasic̆ek model, model risk asso-
ciated with the interest rate can be characterized either bythe mismatch of the volatility (̄σ) or the
speed factor (κ), which are determining factors in the volatility functionof the zero coupon bonds.
Due to the Vasic̆ek modelling, the misspecification ofσ̄ has no impact on the variance difference.
Therefore, in the following, we concentrate on the interestrate misspecification characterized by
the deviation of the assumed̃κ from the trueκ.

We obtain some values for the variance difference as exhibited in Table 2. Firstly, there exists
a deviation of̃κ from κ, the variances of these two strategies differ, even when there is no mor-
tality misspecification. Secondly, mortality misspecification does not have impact on the variance
difference, if there are no interest rate misspecification available. I.e., these two strategies make no
difference to the variance of the total cost if no model risk associated with the interest rate appears.
Therefore, for̃κ = κ = 0.18, overall the variance difference exhibits a value of0. These two ob-
servations validate the argument that the model misspecification resulting from the term structure
of the interest rate has a substantial effect when the variance is taken into account. The effect of
mortality risk is partly contingent on the model risk associated with the interest rate. Thirdly, only
the absolute distance ofκ̃ from κ counts. The bigger this absolute distance is, the higher variance
differences these two strategies result in. Therefore, overall you observe parabolic curves for the
variance difference. In addition, the variance differenceincreases iñx. This positive effect can be
observed in Figures 3 and 4.

To sum up, if the hedger substantially overestimates (κ̃ << κ) or underestimates (κ̃ >> κ) the
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Expected total cost Variance Difference The Ratio

κ̃ x̃ = 35 x̃ = 40 x̃ = 45 x̃ = 35 x̃ = 40 x̃ = 45 x̃ = 35 x̃ = 40 x̃ = 45

0.150 287.795 0 −449.842 774.983 1876.71 4660.65 0.0967 − −0.1518
0.155 293.229 0 −457.831 568.654 1375.73 3414.78 0.0813 − −0.1276
0.160 297.998 0 −464.843 385.079 930.677 2308.87 0.0659 − −0.1034
0.165 302.192 0 −471.014 229.521 554.135 1373.97 0.0501 − −0.0787
0.170 305.891 0 −476.458 108.254 261.073 646.952 0.0340 − −0.0534
0.175 309.159 0 −481.270 28.7651 69.2933 171.608 0.0173 − −0.0272
0.180 312.054 0 −485.532 0 0 0 0 − 0
0.185 314.621 0 −489.315 32.6569 78.4791 194.106 0.0182 − −0.0285
0.190 316.903 0 −492.677 139.546 334.922 827.806 0.0373 − −0.0584
0.195 318.934 0 −495.670 336.029 805.425 1989.29 0.0575 − −0.0890
0.200 320.745 0 −498.338 640.547 1533.21 3783.96 0.0789 − −0.1234
0.205 322.361 0 −500.719 1075.28 2570.10 6338.04 0.1017 − −0.1590
0.210 323.805 0 −502.847 1666.92 3978.35 9802.85 0.1261 − −0.1969

Table 2: Expected total cost, variance differences and the ratio of the standard deviation of the
variance difference and the expected total cost for varyingκ̃ with x = 40 and the other parameters
are given in Table 1.

bond volatilities, and if at the same time he highly overestimates the death probability (x̃ >> x),
the diverse choice of the hedging instruments leads to a hugedifference in the variance. On the
contrary, ãκ value close toκ combined with a big overestimation of the survival probability (x̃ <<
x) almost leads to very small variance difference. I.e., veryclose variances result. The choice of
the hedging instrument does not have a significant effect under this circumstance. These result
leads to a very interesting phenomenon, with an overestimation of the death probability (̃x > x),
the insurance company is always on the safe side in mean, i.e., it achieves a superhedge in the
mean. However, if the set of hedging instruments is restricted, an overestimation of the death
probability does not necessarily decrease the shortfall probability under a huge misspecification
associated with the interest rate (characterized by a big deviation of κ̃ from κ). This is due to the
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Figure 3:Variance difference as function of
x̃ with the realx = 40 for κ̃ = 0.16, κ̃ =
0.18 andκ̃ = 0.20. The other parameters are
given in Table 1.
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observation that a quite high variance difference is reached under this parameter constellation.

In addition, due to the tradeoff between the expected value and the variance difference4, it is
interesting to have a look at the relative size, like the ratio of the standard deviation of the variance
difference and the expected value of the total cost from bothasset and liability side. First of
all, this ratio is not defined when the assumed and real age coincide. Second of all, here for the
given parameters, an overestimation of the death probability (x̃ = 45) has a higher effect than an
underestimation (̃x = 35), i.e. the absolute value of this ratio is larger for the caseof x̃ = 45.
Finally, this ratio can give a hint to the safety loading factor. Assume, the insurer uses standard–
deviation premium principle. The ratio given in Table 2 suggests him how much safety loading to
take when he uses the last two bonds instead of the entire termstructure.

5. CONCLUSION

The risk management of an insurance company must take into account model risk, i.e. the uncer-
tainty about the interest rate and the life expectancy. We show that even a small difference between
assumed and realized death scenarios may have a great impacton the hedging performance because
of the existence of interest rate risk. In practice, this is particularly important because a deviation
of true and assumed mortality/survival probabilities is unavoidable and sometimes even caused
intentionally by the insurance company itself. The problemwhich is associated with the interde-
pendence of model risk concerning the interest rate dynamicand the mortality distribution is even
more severe if there is a restriction on the set of hedging instruments. We measure the risk im-
plied by the restriction of hedging instruments by calculating the additional variance of the hedging
costs, i.e. the variance which is to be added to the variance term without the restriction. Further, we
stress an important problem which arises if, as it is normally done, the contributions of the insured
are given in terms of periodic premiums instead of an up-front premium. If the contributions of the
insured are delayed to a future, uncertain time, model risk influences the liability side in addition
to the asset side. Theoretically, a credit must be taken by the insurer in order to implement the
considered hedging strategies in the asset side. The insurer achieves not necessarily the number
of periodic premiums which is needed to pay back his credit, which leads to an extra cost to the
insurer. To sum up, neither the model risk which is related tothe death distribution nor the one
associated with the financial market model is negligible fora meaningful risk management.
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Abstract

The risks involved in the Himalaya options market have neverbeen more evident than in recent
years as these options have been responsible for heavy losses over that period. These losses
have occurred not only because of adverse market conditionsbut also because of model mis-
specifications. Principal among the dangers of pricing is the inability to find a volatility model
which is consistent with the observed volatility surfaces of individual stocks involved in the
Himalayan. In this paper we present a solution to this problem by using a multivariate mixture
of densities technique. We outline the practical implications of extending this technique to the
Himalayan setting and present our numerical results in detail.

1. INTRODUCTION

Himalayan options first appeared in 1998 when they were introduced by Société Générale as part
of their mountain range series of options. At the time the Himalayan was an entirely new type of
derivative product that merged the path dependency of barrier options with the multi dimensionality
of basket options. Since then several derivatives have emulated the structure of the Himalayan most
notably the Emerald option which has been introduced on Nordic markets.

Although the Himalayan contains some very exotic traits they can be classified as European in
nature and as such their pricing is heavily dependent on the usual sensitivities, namely correlation
estimation and the volatility smile. In any basket type option correlation plays a major role in
pricing, thus significant care is required when estimating this parameter. Including historical cor-
relation directly in pricing is a risk since underlying correlations can change significantly during
times of market stress. The issue of modeling the volatilitysmile is of great practical importance
for a Himalayan because when stocks are removed from the basket the smile can become distorted.

The primary concern of this paper is to apply a mixture of densities technique to the pricing of
Himalayan options in order to deal with the volatility smile. This is done by applying a method
developed by Brigo et al. (2004) which constructs an entirely new manifold of local volatility struc-
tures and removes the need for costly time discretization which is common for the conventional
mixture of densities model.

55
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This paper is split into four sections. The first is a brief review of the Himalayan option includ-
ing a description of some of the different variants available. The second covers the conventional
approach to the multidimensional mixture of densities and then explains the multivariate mixture
of densities (MVMD) developed by Brigo et al. (2004). We thenapply their technique to the
Himalayan option and finally we end with conclusions and thoughts on further work.

2. HIMALAYAN OPTIONS

A Himalayan may most simply be described as a call on the sum ofthe best performers on a basket
of stocks over a certain time interval. At the beginning of the contract a collection of exercise
dates is decided upon. The number of dates may be equal to the number of stocks in the basket
or depending on the variant of the Himalayan it could be less.At each of these dates the best
performing stock (according to a specified performance measure) is permanently removed from
the basket and its return becomes a coupon. This process is then repeated at each exercise date
until there is only one stock left.

Suppose we have a Himalayan written on the underlying stocksS1, S2, . . . , Sn and that the
contract is active over the time interval[0, T ]. This interval is then split inton subintervals written
as:

[t0, t1], [t1, t2], . . . , [ti−1, ti], . . . , [tn−1, tn]

wheret0 = 0 andtn = T . The end point of each of these intervals represents then exercise dates
where the best performing stock will be removed from the basket. Ignoring discounting, the payoff
of a Himalayan will then take one of the following forms:

max

{

A

n
∑

i=1

(

Sm(i)(ti)

Sm(i)(0)
− 1

)

, 0

}

(1)

or

A

n
∑

i=1

max

{(

Sm(i)(ti)

Sm(i)(0)
− 1

)

, 0

}

(2)

whereA is the nominal amount associated with the contract and the indexm(i) records the best
performer of the stocks which remain on the interval[ti−1, ti]. We will illustrate the difference
between both variants by way of an example.
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Months
0 1 2 3 4 5 6

A 105.18 100.00 96.54 87.45 91.40 92.89 89.06
B 9.12 10.63 11.14 15.67 14.12 13.56 16.76
C 48.97 50.90 58.97 55.40 60.20 61.23 65.45
D 15.62 17.53 25.73 30.91 32.00 34.71 38.49
E 90.14 100.05 105.36 107.86 111.65 116.23 121.49
F 90.36 84.99 89.11 93.06 96.96 99.01 94.62

Table 1: Stock Price Table

Monthly Returns
1 2 3 4 5 6 Coupon

A −0.05 −0.08 −0.17 −0.13 −0.12 −0.15 −0.15
B 0.16 0.16
C 0.04 0.20 0.13 0.23 0.23
D 0.12 0.64 0.64
E 0.11 0.17 0.20 0.20
F −0.06 −0.01 0.03 0.07 0.10 0.10

Table 2: Stock Price Returns

Suppose we have a Himalayan of the type (1) written on six underlying stocks A, B, C, D, E and F
with table 1 charting the closing price of these stocks over six time periods. Table 2 calculates the
terminal payoff of the Himalayan in this situation. The firstcolumn of table 2 shows the return of
each stock over period one. As is shown B has the highest return thus this return is locked in as the
first coupon and B is removed from the basket. This process is then repeated in the next 5 columns
with the final column showing the contribution of each stock to payoff of the Himalayan. The
payoff is then the sum of the coupons. In this case the payoff was 1.18. The Himalayan described
in (2) could have improved on this payoff since the contribution of A would have been floored at
zero giving a payoff of 1.33.

Another variation to the Himalayan is to payout on fewer periods:

max

{

A

L
∑

i=1

(

Sm(i)(ti)

Sm(i)(0)
− 1

)

, 0

}

(3)

or

A

L
∑

i=1

max

{(

Sm(i)(ti)

Sm(i)(0)
− 1

)

, 0

}

(4)

whereL < n. This can have the effect of increasing the payout since stocks that have performed
badly over the entire contract can be excluded from the payout. In our example if we had letL = 5
then the payout would have excluded A which performed poorly.



58 J. Meaney

The structure of the Himalayan can be changed drastically bycalculating the returns in a dif-
ferent manner. Instead of returns being relative to the initial prices at the start of the contract we
can calculate returns over a period relative to the opening price of stocks at the beginning of that
period. This leads to the following pricing functions:

max

{

A

n
∑

i=1

(

Sm(i)(ti)

Sm(i)(ti−1)
− 1

)

, 0

}

(5)

A

n
∑

i=1

max

{(

Sm(i)(ti)

Sm(i)(ti−1)
− 1

)

, 0

}

(6)

where againm(i) indexes the best performing stock from those that remain over the period[ti−1, ti].
This variation tends to wipe out the bad past performances ofstocks and although returns will de-
crease as more stocks are removed from the basket the final payout will in general be higher than
the structure (1) and (2). For a more detailed description ofthe Himalayan option see Overhaus
(2002).

3. MIXTURE OF DENSITIES (MD)

The issue of volatility modeling is of great importance for Himalayan options since each of the
stocks involved with the option and the basket itself are likely to show a volatility smile. In order to
deal with this we propose to use a multivariate mixture of densities (MVMD) technique developed
by Brigo et al. (2004) in the context of Himalayas.

Suppose we have a stockS which exhibits a non constant volatility and obeys dynamicsgiven
by the equation

dSt = µStdt + σ(St, t)StdWt

under theT forward measureQT whereµ is constant,W is a standard Brownian motion andσ is
well behaved function which obeys linear growth conditions. Under these circumstances a unique
solution to the above SDE exists. The aim of the MD technique is to find the local volatility ofSt in
terms of the marginal densities ofN auxiliary processeszk

t . These are governed by the dynamics

dzk
t = µzk

t dt + vk(z
k
t , t)dWt

where eachzk
t has marginal densitypk

t andvk(z
k
t , t) satisfies linear growth conditions. The marginal

density ofSt is then assumed to be representable as a convex combination of the marginal densities
of zk

t ,

pt(S) =
∑

k

λkp
k
t

with λk ≥ 0 for all k and
∑

k λk = 1. Through manipulations of the related forward Kolmogorov
equations it can be shown that a candidate for the local volatility of St can be written as
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σ(y, t) =

√

∑N

k=1
λkv

2

k(y, t)pk
t

∑N

k=1
λky2pk

t

. (7)

If the triplet (zk
t , vk, p

k
t ) is defined as

zk
0

= S0 vk(y, t) = yσk(t) Vk(t) =
√

∫ t

0
σ2

k(s)ds

and

pk
t (y) =

1
√

2πyVk(t)
exp

[

−
1

2V 2

k (t)

(

log

(

y

S0

)

− µt +
1

2
V 2

k (t)

)2
]

the corresponding dynamics forS(t) admits a unique strong solution with local volatility as shown
previously. As a consequence of (7) pricing a European option becomes immediate since mixing
basic lognormal densities leads to analytically tractableoption prices under the model process for
the underlying asset. In the case of a European call on the stock S with maturityT and strikeK
the initial price is

D0T E[ST − K]+ =
N
∑

i=1

λiD0T

∫

+∞

0

[x − K]+pi
T (x)dx

wherepi
T (x) are the marginal densities of the auxiliary equations andD0T is the discounting factor

over [0, T ]. This MD model allows accurate calibration to any smile shaped volatility curve or
surface. Freedom when choosing the number of auxiliary equations offers great flexibility and
as a consequence of the pricing formula for European calls calibration to entire implied volatility
structures over several strike prices and maturities are possible. We now leave the single stock MD
and look at the multivariate case.

Suppose we wish to evaluate the price of an option which depends on several underlying assets
that each show a volatility smile. In order to price an optionsuch as this, using the conventional
MD method, we would begin by calibrating the volatility surface of each of the stocks using the
single asset MD shown in the previous section. Once the dynamics of each of the stocks is found
a Monte Carlo simulation would be used to price the option by using paths suitably discretized
according to the drift rate of each of the stocks and a diffusion matrix given by the local volatility.
Using an instantaneous correlation structureρij calculated through a technique such as historical
analysis and supposed constant over time, the Monte Carlo method would proceed by simulating
the joint evolution of the stocks over the time grid[τ0, τ1], . . . , [τn−1, τn] with a covariance matrix
component(i, j) over the time interval[τm, τm+1] given by:

C(Si, Sj, t) =

√

√

√

√

∑N

k=1
λikσ

2

ik(t)p
ik
τm

(Si)
∑N

k=1
λikpik

τm
(Si)

√

√

√

√

∑N

k=1
λjkσ

2

jk(t)p
jk
τm

(Sj)
∑N

k=1
λjkp

jk
τm

(Sj)
ρij . (8)

Thus the stocks in our basket will evolve according to

Si(τm+1) = Si(τm) + µSi(τm)(τm+1 − τm) +

√

√

√

√

∑N

k=1
λikσ

2

ik(τm)pik
τm

(Si)
∑N

k=1
λikpik

τm
(Si)

Si(τm)(Wτm+1
−Wτm

).
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This scheme will certainly price an option on a basket of stocks. However, by imposing that the
covariance of the multidimensional process to be of the formof (8) we will be moving within a
given manifold of the possible local volatility structures. Discretization is also a costly procedure
for even the most simple of derivatives.

The multivariate mixture of densities (MVMD) technique of Brigo et al. (2004) deals with
these problems by forming the marginal density of the multivariate process in a completely new
fashion. Again suppose we wish to price an option written on the underlying assetsS1, . . . , Sn

with marginal densitiespi
t and that we have calibrated a MD to each of their volatility surfaces

according to:

pi
t(y) =

Ni
∑

k=1

λikp
ik
t (y), with λik ≥ 0, ∀k and

Ni
∑

k=1

λik = 1

where eachSi hasNi auxiliary equations given by

dzik
t = µikz

ik
t dt + σik(t)z

ik
t dWt.

For simplicity we’ll assume that each stock has the same number of auxiliary equationsN . The
MVMD then proceeds as follows. The joint multivariate density is defined as

pt(y) =
N
∑

i1,i2,...,in=1

λ1i1λ2i2 . . . λninp
(i1...in)

t (y)

where the component densities are

p
(i1...in)

t (y) =
1

(2π)
n

2

√

det Ξ(i1...in)(t)
∏n

i=1
yi

exp

[

−
ỹ(i1...in)Ξ(i1...in)(t)−1ỹ(i1...in)

2

]

with

ỹl
(i1...in) = ln yl − ln yl(0) −

∫ t

0

(

µ(lil)
s −

σ
(lil)

2

s

2

)

ds

andΞ(i1...in)(t) stands for the integrated variance covariance matrix whose(l, m) entry is

Ξ(i1...in)(t)lm =

∫ t

0

σl,il(s)σm,im(s)ρlmds

andρlm is the historical correlation betweenSl andSm.
In words this joint density function mixes all of the possible volatilities and combines them as

a convex combination while ensuring consistency with the initial models for the individual stocks.
The same historical correlationsρij are imposed on the densities at the constituent level but at
the level of the actual process the correlations are more complex. Because of the form of the
component volatilities pricing becomes immediate with this new method. Rather than employing
a costly discretization scheme as was required for the conventional method, we can run a set of
single step Monte Carlo integrations for each combination(i1, . . . , in).
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4. PRICING HIMALAYAN OPTIONS WITH MVMD

We will now apply the MVMD to the pricing of a Himalayan written on stocks that show a smile
like volatility. Suppose we have a Himalayan written on two stocksS1, S2 over two time periods
[t0, t1] and[t1, t2]. Assuming a deterministic risk free rate, the value of the Himalayan at any time
during the contract can be denoted by a generic pricing function G(t; 0, T, A). The terminal payoff
of the Himalayan can then be written as:

G(T ; 0, T, A) = g(S1(t1), S2(t1), S1(t2), S2(t2)) = g(S)

where the functiong : R
4

+
→ R represents the payout given by one of the Himalayas described

earlier. The initial price is then the discounted expected value of the payout under the risk neutral
measureQ. If the joint density function of the stocksp(S1(t1), S2(t1), S1(t2), S2(t2)) is written as
p(S) we get:

G(0; 0, T, A) = D0T E[g(S1(t1), S2(t1), S1(t2), S2(t2))]

= D0T

∫

R
4

+

g(S)p(S)dS. (9)

Provided that the density functionp(S1(t1), S2(t1), S1(t2), S2(t2)) is known, this four dimensional
integral can be evaluated numerically via Monte Carlo methods to give the initial price of the
Himalayan.

Applying the MVMD to the Himalayan now becomes apparent. Suppose we have calibrated
the volatility surfaces of our two stocks according to the mixture:

S1 : (λ11, λ12) = (0.9, 0.1), (σ11, σ12) = (0.4, 0.1)

S2 : (λ21, λ22) = (0.8, 0.2), (σ21, σ22) = (0.2, 0.15).

The density function in (9) will then become:

p(S1(t1), S2(t1), S1(t2), S2(t2)) = f(S1(t1), S2(t1))h(Sm(t2))

= λ11λ21f
(11)(S1(t1), S2(t1))h(Sm(t2)) + λ12λ21f

(21)(S1(t1), S2(t1))h(Sm(t2))

+ λ12λ22f
(22)(S1(t1), S2(t1))h(Sm(t2)) + λ11λ22f

(12)(S1(t1), S2(t1))h(Sm(t2)).

where thef (ij) functions are as defined in the previous section andh(Sm(t2)) is the distribution of
the remaining stock over the second period which will be a mixture of lognormals determined from
the initial calibration. In this case the problem of incorporating the smile effect into the Himalayan
now becomes one of calculating four integrals over the first period. Each of these integrals prices
a Himalayan written on two underlying stocks that follow geometric Brownian motion with flat
volatility smiles. The theory allows for term structure to be included in the volatility, but in our
examples volatility will be kept constant. For the densityf (ij) the auxiliary stocks will have the
following dynamics over period one:

dS1(t) = µS1(t)dt + σ1iS1(t)dW1

dS2(t) = µS2(t)dt + σ2jS2(t)dW2.
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The appropriate payoff will then be applied to the stocks andone of them will be eliminated. This
determines the densityh(Sm) in each of the four integrals which is written in terms of its two
constituent densities. Thus the density function will be made up of eight terms with the general
component being of the form

λ1iλ2jf
(ij)(S1(t1), S2(t1))λmkh

(k)(Sm(t2))

where over period two the auxiliary stockSm(t) follows the dynamics

dSm(t) = µSm(t)dt + σmkSm(t)dWm.

The correlation between the auxiliary stocks will be the same as the historical correlationρ be-
tween the stocksS1 andS2. Accurate estimation of this parameter is crucial for pricing Himalayas
with smile characteristics. In figure 1 we plot the initial price of various Himalayan options written
on the stocksS1 andS2 over two equal time periods. In each plot the overall level ofhistorical
correlation is varied while the volatility of the individual stocks remains unchanged. These prices
are calculated using one hundred thousand Monte Carlo paths. The risk free rate is fixed at0.1
and both stocks have an initial price of100. The plots firstly indicate that regardless of the level of
the volatility smile the locally floored Himalayan of type (2) has very little correlation sensitivity.
The globally floored Himalayan in (1) is long correlation forboth the flat and mild volatility smile.
This is an expected result since the globally floored variantis an option on the performance of the
overall basket rather than an option on the individual stocks. However when the smile becomes
more prominent the Himalayan shows no sensitivity to correlation. The Himalayan (6) with pe-
riodic performance is short correlation for all levels of the volatility smile. This is unsurprising
since the structure is similar to a best of option on the two stocks and then an option on the single
remaining stock. Both of these are short correlation so their sum will also be short correlation. In a
similar manner the Himalayan variant (5) also has short correlation for both the constant volatility
and smile like volatility.

It should be noted that when using the MVMD technique the actual correlation betweenS1 and
S2 will not be the same as the historical correlationρ which is used in the conventional method.
The covariance of the stocks is also different. Through the multidimensional Kolmogorov equation
it can be shown that in the MVMD regime the variance and covariance of our stocksS1 andS2 are
given by:

C11(S1, S2, t) =

∑

2

k,k′=1
λ1kλ2k′σ2

1k(t)p
(kk′

)(S1(t), S2(t))
∑

2

k,k′=1
λ1kλ2k′p(kk′)(S1(t), S2(t))

C22(S1, S2, t) =

∑

2

k,k′=1
λ1kλ2k′σ2

2k′(t)p(kk′
)(S1(t), S2(t))

∑

2

k,k′=1
λ1kλ2k′p(kk′)(S1(t), S2(t))

and

C12(S1, S2, t) =

∑

2

k,k′=1
λ1kλ2k′σ1k(t)σ2k′(t)ρp(kk′

)(S1(t), S2(t))
∑

2

k,k′=1
λ1kλ2k′p(kk′)(S1(t), S2(t))

.
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Comparing these with (7) and (8) we see that the variances of the stocks take on a new structure.
The variances of the two stocks are now fully dependent on each other in a manner which is
not seen in the conventional method. In fact it can be shown that the variance and covariance
of the conventional method can be seen as an approximation for the MVMD technique valid for
weakly correlated systems. In figure 2 we plot the conventional price and MVMD price of a type
(5) Himalayan written onS1 andS2. For low correlations the two prices coincide but for larger
correlations they diverge.
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Figure 1:Price against varying correlation for Himalayans of type (1) (dashed line) and (2) in the left column and
type (5) (dashed line) and (6) in the right column. Componentvolatilities are fixed at(σ11, σ12) = (0.4, 0.1) and
(σ21, σ22) = (0.2, 0.15). Theλ values vary. Top:(λ11, λ12) = (1, 0) and(λ21, λ22) = (1, 0). Middle: (λ11, λ12) =
(0.9, 0.1) and(λ21, λ22) = (0.8, 0.2). Bottom:(λ11, λ12) = (0.5, 0.5) and(λ21, λ22) = (0.5, 0.5)
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Figure 2:Price against varying correlation for the conventional method (dashed) and MVMD method. Component
volatilities are fixed at(σ11, σ12) = (0.4, 0.1) and(σ21, σ22) = (0.2, 0.15). Theλ values vary. Left:(λ11, λ12) =
(0.9, 0.1) and(λ21, λ22) = (0.8, 0.2). Right: (λ11, λ12) = (0.99, 0.01) and(λ21, λ22) = (0.95, 0.05)

5. CONCLUSIONS

We have outlined the MVMD technique and shown how to apply this to many variants of the Hi-
malayan option. The main advantage of this technique is thatit allows us to price options with
single step Monte Carlo calculations. This is a major improvement over the the conventional mix-
ture of densities which relies on costly time discretization and simple correlations. A comparison
between the conventional MD and the MVMD has also validated theoretical results. The price of
a Himalayan calculated using the two methods diverges for larger correlations. The MVMD also
allows accurate modeling of stock distribution. In particular greater attention can be given to the
tails which is important because of the maximization process which is embedded into the payout
function. Our calculations illustrate the sensitivity of Himalayas to the historical correlation be-
tween stocks and they also show how the smile of individual stocks can change the behavior of the
option. Further work could include comparing this method tostochastic volatility models which
can be used to price Himalayas and studying the fit of MVMD model correlation against actual
correlations.
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Abstract

The extent to which the money supply affects the aggregate cash balance demanded at a cer-
tain level of nominal income and interest rates is determined by the interest-rate-elasticity and
stability of the money demand. An actuarial approach is adopted in this paper for dealing
with investors facing liquidity constraints and maintaining different expectations about risks.
Under such circumstances, a level of surplus exists which maximises expected value. More-
over, when thedistorted probability principleis introduced, theoptimal liquidity demand is
expressed as aValue at Riskand thecomonotonicdependence structure determines the amount
of money demanded by the economy. As a consequence, the more unstable the economy, the
greater the interest-rate-elasticity of the money demand.Moreover, for different parametric
characterisation of risks,marketparameters are expressed as the weighted average ofsectorial
or individual estimations, in such a way that multiple equilibria of the economy are possible.

1. INTRODUCTION

According to the Keynes’sliquidity preferenceproposition, the demand for cash balances is pos-
itively affected by the level of income and negatively affected by the return offered by a class
of money substitutes, see Keynes (1935). The first part of theproposition is a consequence of
the assumption that the amount of transactions is proportional to the level of income. To explain
the effect of the interest rate, Keynes emphasises the influence of capital fluctuations in decision-
making. Thus, investors expecting interest rates to rise demand fewer risk-free securities in order
to avoid capital losses — since the price of such instrumentsis expected to diminish in this case.
By contrast, when interest rates are expected to fall, more bonds are demanded — in this way,
capital gains can be attained after the collapse of interestrates. Therefore, fewer provisions are
maintained for high levels of the interest rate and vice versa.

In macroeconomic analysis, the level of prices establishesthe connection betweennominal
magnitudes, expressed in monetary units, andreal quantities, which represent flows of goods and
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services. Accordingly,Y = P · y, whereP , Y andy respectively denote the level of prices, the
nominal income and the real income. Let us additionally denote by M the total money supply.
Therefore, the short-run monetary equilibrium is given by thequantity equation:

M = P y · l(r) = Y · l(r). (1)

The liquidity preferencefunction l(r) expresses the ratio between demanded cash balances and
nominal income. It is not likely to be constant but it may change slowly over time. The inverse
ratio of the liquidity preference function is calledvelocity of money.

Any change in the money supply will require a change in one or more of the variables de-
termining the liquidity demand (i.e.P , y or r) in order to reestablish the monetary equilibrium.
When prices are rigid for short-run fluctuations and the realproduct remain stable in short-terms,
the whole adjustment is performed inl(r). In addition, if the liquidity preference isabsolute, i.e. if
investors are satisfied at a single level of the interest rate,1 the amount of money can change without
a change in either nominal income or interest rates. Under such circumstances, monetary policy is
useless for dealing with short-run fluctuations. The situation is different if prices are flexible and
liquidity preference isnon-absolute. Then a monetary expansion produces a new equilibrium in-
volving a higher price for the same quantity, the higher thisresponse the more inelastic the money
demand. In the short-run, production is encouraged until prices are reestablished at their original
level. In the long-run, new producers enter the market and existing plants are expanded, as claimed
by Friedman (1970).

Under such circumstances, the efficacy of monetary policy depends on the degree of rigidity
of prices and the elasticity of the money demand, as well as onthe stability of liquidity prefer-
ence. There is a consensus among researchers about the existence of a stable long-run relation-
ship, though fluctuations of cash balances in the short-run remain unexplained. Episodes like the
missing moneyin the mid-seventies, the great velocity decline in the early eighties, followed by
the expansion of narrow money in the mid-eighties, or thevelocity puzzleof the mid-nineties, still
lack a satisfactory explanation, see Ball (2001) and Ball (2002), Carpenter and Lange (2002) and
Teles and Zhou (2005). In accounting for such drawbacks, recent literature has focused onuncer-
tainty, which is supposed to have been incremented after 1980 due toderegulation and financial
innovations, as in Atta-Mensah (2004), Baum et al. (2002), Carpenter and Lange (2002), Choi and
Oh (2003) and Greiber and Lemke (2005). Deregulation and financial innovation are also given as
arguments to support the role of the opportunity cost in accounting for unexplained fluctuations,
see Ball (2002), Collins and Anderson (1998), Duca (2000), Dreger and Wolters (2006) and Teles
and Zhou (2005). According to this view, a stable long-run relationship exists and movements of
the interest rate can explain all short-run episodes, as long as the right monetary aggregate is used.

In this paper, an extended model is proposed according to which liquidity preference is ex-
plicitly determined byuncertaintyand information. First, the cash demand of a single represen-
tative investor is obtained. Investors are supposed to faceliquidity constraints and consequently,
in Section 2equity is treated as an additional liability. In addition, the behaviour towards risk is
determined by the transformation of probabilities according to aninformationalparameter. Then

1Absoluteliquidity preference corresponds to the case when the liquidity demand is perfectly elastic with respect
to the interest rate. According to Keynes, the degree of elasticity depends on how homogeneous expectations are,
where perfect elasticity is obtained when expected and actual values are the same. In this case, money and risk-free
securities are perfect substitutes — since no capital gainsor losses are expected.
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the expected return of the fund is maximised when the mathematical expectation of the residual
exposure (a measure of the cost of assuming bankruptcy) plusthe opportunity cost of capital is
minimised. In this way, I follow Dhaene et al. (2003) and Goovaerts et al. (2005), who on these
terms develop a mechanism for capital allocation. When looking for the aggregated surplus inSec-
tion 3, capital is supposed to be provided by a central authority orfinancial intermediaries acting in
a competitive market, in such a way that a single interest rate is required for lending. Hence the sit-
uation is similar to the case of a centralised conglomerate distributing capital among subsidiaries,
as in Dhaene et al. (2003), Goovaerts et al. (2005) and Mierzejewski (2006), and the opportunity
cost of money is related to the average return over a class of money substitutes. Thus, monetary ag-
gregates are determinants of liquidity preference in the model. Finally, within a Gaussian setting,
the aggregate exposure is normally distributed and its volatility is equal to the weighted average of
individual volatilities. Therefore, aggregation plays a role in the determination and stability of the
liquidity demand. The same results are obtained when marginal risks are exponentially and Pareto
distributed. The final remarks are given inSection 4.

2. THE RATIONAL MONEY DEMAND

Since in frictionless markets the amount of cash maintainedfor precautionary purposes can be
modified at any time by lending and borrowing, managers who maximise value demand no equity
— which is actually the proposition established by Modigliani and Miller (1958). However, averse-
to-risk customers are sensible to fluctuations and, as long as the business activities of financial
intermediaries — which accordingly are said to beopaque— are not observed by outsiders, a
pressure is established to be perceived as default-free, assuggested by Merton (1997). In the model
developed by Tobin (1956), averse-to-risk investors show liquidity preference as behaviour towards
uncertainty. Assuming that risks follow Gaussian distributions, a linear relationship is established
between the expected returns and volatilities of the portfolios containing a proportion of a certain
fund and a cash guarantee, which determines the set ofefficientportfolios — in the sense that for
any combination outside the line, it is always possible to build a new fund providing the same
expected return and a lower risk, or the same risk but a higherreturn. The way preferences affect
portfolio decisions can then be analysed in the plane of expected returns and volatilities, where
the indifference curves of risk-lovers should present a negative slope, as long as such individuals
accept a lower expected return if there is a chance to obtain additional gains. By contrast, averse-
to-risk investors do not take more risk unless they are compensated by a greater expected return
and consequently, their indifference curves have positiveslopes. Therefore, for any risk-aversion
profile, the optimal combination is determined by the (tangency point of) intersection between the
unique indifference curve representing preferences and the line of efficient portfolios.

Let us analyse in the following how the Tobin’s model is affected by the hypothesis ofimper-
fect competition, a case where risks belong to a general class of probability distributions which
economic agents distort according to their information andknowledge when making decisions.
Moreover, liquidity constraints are faced when borrowing and lending and managers have to ex-
pend effort to correctly assess prices. Let the parameterθ denote the state of information of an
investor holding a mutual fund whose percentage return is represented by the random variableX.
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Because of the precautionary motive, a guaranteeL is maintained for a determined period of time
to avoid bankruptcy. In order to introduce in the model the effect of liquidity constraints, equity is
regarded as an additional liability and the size of the guarantee is expressed as a proportion of the
level of incomeY , such thatL = Y · l, wherel represents the proportion of income assigned to the
non-risky asset. Hence, ifr0 denotes the risk-free interest rate, the percentage capital return of the
total portfolio can be expressed asY = X − l − r0 · l and decisions are affected by thepercentage
return on income:

µθ,Y = Eθ[Y ] = (µθ,X − l) − r0 · l.

In giving a meaning to the informational parameterθ, let us stress the fact thatexpectationsare
wanted to be modified. Then probability beliefs are transformed by a distortion parameter which is
supposed to be determined byinformationandknowledgeand theproportional hazards distortion
is introduced, see Wang (1995):

Eθ [X] =

∫

x dFθ,X(x) =

∫

Gθ,X(x) dx :=

∫

GX(x)
1

θ dx.

Thecumulativeanddecumulative(also known assurvival) probability distributionfunctions have
been introduced,Fθ,X(x) = Pθ [X ≤ x] = 1 − Pθ [X > x] = 1 − Gθ,X(x). When θ > 1,
the expected value of risk is overestimated and it is underestimated whenθ < 1, in this way
respectively accounting for the behaviour ofaverse-to-riskandrisk-lover investors.

Notice, however, that individuals react differently depending on the sign of the capital return. In
fact, when a loss is suffered, cash is demanded to avoid default, while in the case a gain is obtained
the surplus can be used to pay current liabilities or assigned to new investments. Hence, decision-
makers mainly concerned about the speculative and the precautionary motives respectively focus
on the termsEθ

[

(X − l)
+

]

andEθ

[

(X + l)
−

]

. Let us accordingly assume that capital decisions
are taken by risk managers who minimise bankruptcy and rely on theaveragevalue of the insured
return:

Eθ

[

(X − l)
+

]

≈ Eθ [X+] − rθ,X · l.

Since the termrθ,X > 0 represents the absolute value of the marginal reduction in insured capital
gains produced when attracting an additional unit of equity, it can be regarded as apremium for
solvency. Hence the following expression is obtained for the expected percentage income:

µθ,Y = Eθ [X+] − Eθ

[

(X + l)
−

]

− (r0 + rθ,X) · l.

Under such conditions,precautionaryinvestors that maximise value minimise bankruptcy costs.
Applying Lagrange optimisation, we obtain that decision makers attract funds until the marginal
return of risk equals the total cost of capital:

−
∂

∂l
Eθ

[

(X + l)
−

]

− (r0 + rθ,X) = Gθ,−X (l∗) − (r0 + rθ,X) = 0.

Equivalently, it can be said that investors stop demanding money at the level at which the marginal
expected gain in solvency equals its opportunity cost. Thusthe optimal cash demand is given by:

lθ,X (r0 + rθ,X) = G−1

θ,−X (r0 + rθ,X) . (2)
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From this expression, the money demand follows a decreasingand — as long as the distribu-
tion function describing uncertainty is continuous — continuous path, whatever the kind of risks
and distortions. The minimum and maximum levels of surplus are respectively demanded when
(r0 + rθ,X) ≥ 1 and(r0 + rθ,X) ≤ 0.

In practical applications, intermediaries face operational and administrative costs, at the time
that a premium over the risk-free interest rate is asked for lending in secondary markets. Hence,
the returnr0 + rθ,X can be interpreted as anetopportunity cost. Though environmental facts, such
as the perception of credit quality and gains in efficiency because of improvements on analysis
and administration, are expected to evolute on time, we can regard them as softly modified —
and not a matter ofspeculation. Also the risk attitude of managers is supposed to remain more
or less unchanged. Therefore, the parameterθ is expected to remain stable and consequently, as
long as the probability distribution of the random variableX is also stable, the capital decisions
of investors should remain more or less the same and the economy as a whole should behave
accordingly.

However, if probability distributions are allowed to evolve on time — i.e. if the processes of
capital gains and losses are notstationary— so does the premium for solvencyrθ,X . Actually,
this can be the case after a monetary expansion — which can be performed by the central bank as
well as by the entrance of new investors — since as long as partof the extra money is used to buy
financial securities and the increment in demand is high and persistent enough to induce the price
to risemore frequently, the termEθ

[

(X − l)
+

]

is pushed to increase. In a similar way, a monetary
contraction can press the insured return to decrease. This situation might in turn impel decision-
makers to actualise expectations and so the informational parameterθ might be modified. But this
adjustment is supposed to be produced with a certain delay — for time is required for analysis
— while the opportunity cost may beinstantaneouslyaltered. Therefore, changes in the stock
of money may induce instabilityfrom within in secondary markets. Adjustments are performed
along a stable money demand relationship, though the process may be reinforced by structural
modifications once expectations are actualised.

3. SHORT-RUN MONETARY EQUILIBRIUM

In order to obtain an expression for the cash balance demanded by the whole economy, let us
assume that economic agents hold aggregate exposures characterised by the random variables
X1, . . . , Xn. Capital is supplied by a central authority at a single interest rater (or, equivalently,
secondary markets are regarded as competitive and financialintermediaries areprice takers) re-
lying on the informational parameterθ and the uncertainty introduced by themarketportfolio X.
When different expectations are allowed among decision makers, the aggregate money demand is
given by:

lθ1,...,θn,−X(r) =
n

∑

i=1

G−1

θi,−Xi
(r) = G−1

θ1,...,θn,−X(r).

The second equality is a mathematical identity as long as theprocess of capital gains and losses of
the market portfolio is described by thecomonotonic sumX = Xc

1
+· · ·+Xc

n, whereGθ1,..., θn,−X =
(
∑n

i=1
G−1

θi,−Xi

)−1

denotes the distribution function of the comonotonic sum when marginal dis-
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tributions are given by(Gθ1,−X1
, . . . , Gθn,−Xn

). Comonotonicitycharacterises an extreme case of
dependence, when no benefit can be obtained from diversification.2 Thusprecautionaryinvestors
rely on the most pessimistic case, when the failure in any single firm spreads all over the market.

The dependence of the liquidity demand on the variability ofincome becomes explicit in a
Gaussian setting. Let us assume in the following that individual exposures are distributed as Gaus-
sians with meansµ1, . . . , µn and volatilitiesσ1, . . . , σn, while the contributions of individual ex-
posures to the market portfolio are given by the coefficientsλ1, . . . , λn, with 0 ≤ λi ≤ 1 ∀i, such
thatY i = λi · Y andY = Y 1 + · · · + Y n. Volatilities are expressed as proportions of the lev-
els of income and can be interpreted as the volatilities of different funds as well as the distorted
volatilities of the same Gaussian exposure — or some intermediate case. Under such conditions,
the comonotonic sum is also a Gaussian random variable, see Dhaene et al. (2002), whose mean
and volatility are respectively given by:

µ =
n

∑

i=1

λi · µi & σ =
n

∑

i=1

λi · σi. (3)

On these grounds, the weighted average mean and volatility describe the uncertainty of the market
portfolio. In particular, high volatility may be induced bya single group, as a negative externality
to more efficient companies and so the possibility ofcontagionnaturally arises in the model. In the
same way, stability may be inherited by less efficient institutions when low volatility predominates.

Since thequantile function of a Gaussian random variable can be expressed in terms of the
standard Normal distributionΦ (see Dhaene et al. (2002)), the short-run monetary equilibrium is
described by the following equation:

M = Y · lµ,σ(r) = Y ·
[

−
(

µ + σ Φ−1 (r)
) ]

. (4)

Therefore, the monetary equilibrium can be reestablished by modifying the level of nominal in-
comeY , the average returnµ, the market volatilityσ or the interest rater. As already stated,
only r is expected to change in the short-run. Monitoring and analysis induce investors to eventu-
ally incorporate the new regime ofX in decision making and possibly modify expectations, both
determinants ofµ andσ.

The difference between the classic and the extended model can be noticed by comparingEqua-
tions 1and4. Thus, while inEquation 1the elasticity of income with respect to the stock of money
exclusively depends on the interest rate through the liquidity preference function, inEquation 4
it is also affected by uncertainty. In addition, ify represents the level ofreal income, thenew
short-run equilibrium can be written in real terms as:

M = P y ·
[

−
(

µ + σ Φ−1 (r)
) ]

.

Therefore, to stabilise the product it is also required to control the market risk. A proper monetary
policy should then consider a combination ofP , µ, σ and r compatible with a given level of
income. The level ofσ that preserves the monetary equilibrium for given values ofM , Y , µ

andr can be regarded as theinducedvolatility. A tentative criterion for monetary policy may then
involve the determination of the level of interest rates ensuring a given inflation and induced market

2The inverse probability distribution of the comonotonic sum is given by the sum of the inverse marginal distribu-
tions, see Dhaene et al. (2002).
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volatility. Additionally, thenon-distortedvolatility can be estimated by thestandard deviationof
the random variableX representing the capital losses of the market portfolio. A measure of the
degree of distortion performed by the market is thus determined by the difference between the
induced and the non-distorted volatility.

An alternative representation is obtained by considering that individual exposures areexpo-
nentially distributed. In this case, the comonotonic sum is also exponentially distributed (see
Dhaene et al. (2002)), such that ifβ1, . . . , βn denote theinformational typesof investors, with
βi ≥ 0 ∀i, and, as before,λ1, . . . , λn represent the marginal contributions to the aggregate income,
with 0 ≤ λi ≤ 1 ∀i, then the exponential parameter of the market portfolio is expressed as the
weighted average of the exponential parameters of marginalrisks:

β =

n
∑

i=1

λi · βi.

Therefore, the liquidity preference function of the economy is given by:

lβ(r) = −β · ln(r), with β > 0. (5)

Thus, the higher the parameterβ, which within this framework completely characterises risk, the
more sensitive is liquidity preference to the cost of capital. In this way, uncertainty is explicitly
related to the monetary equilibrium and hence to the terms ofliquidity — determined by the money
supply.

When marginal risks arePareto distributed, the survival probability distributions as estimated
by decision-makers are given by:

G−Xi
(x) = x

−
1

αi , with αi > 0 and x > 1.

The parametersα1, . . . , αn correspond to thestates of informationof investors. As long as they
agree on a single valueα, the comonotonic sum is also Pareto distributed (see Dhaeneet al. (2002))
and liquidity preference is given by:

lα(r) = n · r−α. (6)

Under different expectations, the comonotonic sum is not necessarily Pareto distributed. However,
an estimation of the parameterα can be found such thatEquation 6determines the monetary
equilibrium. In this case, the point interest-rate-elasticity is constant and equal toα. Many models
for the estimation of the money demand are supported on this assumption.

4. CONCLUSIONS

An extendedmodel is presented in this paper — also referred to as theimperfect competition
model — to characterise the liquidity preference of investors facing liquidity constraints. Under
such circumstances, a level of surplus exists that maximises value and therational money demand
is determined by thequantilefunction — a measure of the probability accumulated in thetail of
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the distribution function — of the random variable representing the series of capital profits and
losses of the residual exposure (Equation 2). In this way, an equivalence is established between a
confidence level and the opportunity cost of capital and the optimal amount of cash is determined
by the exchange of a sure return and a flow of probability. An informational parameter, affecting
the opportunity cost of money, represents the expectationsof decision makers. Averse-to-risk and
risk-lover investors respectively under and overestimatethe cost of capital and so they respectively
demand more and less equity.

The importance attached to liquidity preference in macroeconomic analysis is a consequence
of the fact that it determines the short-run monetary equilibrium of the economy. In the classic
approach, the amount of money which is compatible with givenlevels of nominal income and
interest rates can be obtained fromEquation 1, see Friedman (1970). According to theextended
model presented in this paper, the aggregate money demand ofthe economy is given by the sum
of the liquidity preferences of investors, mathematicallycharacterised by thecomonotonic sum
of individual exposures. The aggregate money demand is thusexpressed as a Value-at-Risk but
referred to amarket portfoliowhich relies on the most pessimistic case, when no gain can be
obtained from diversification. In a Gaussian setting, the comonotonic sum is also a Gaussian
variable, whose volatility is equal to the weighted averageof individual volatilities (Equation 4).
In this way, the classic model is extended allowing a correction for risk.

Within the imperfect competitionframework, the total stock of moneyM , the level of income
Y , the interest rater, the meanµ and the market volatilityσ are all determinants of the short-run
monetary equilibrium (Equation 4). Thus, as long as part of the funds available in the economy
are spent on capital assets, an adjustment in the opportunity costr is expected in the short-run —
stimulated by the modification of the stochastic nature of capital gains — which is supposed toin-
stantaneouslyaffect liquidity preference. In the medium-term, investors correct their expectations
and so part of the adjustment may be performed throughinformationalshocks affecting the aggre-
gate mean or the market volatility. An important feature of the mechanism is that the evolution of
risks, motivated by flows of funds, determines expectationsand not the opposite, though liquidity
preference might also be affected by apurely informational shock.

As pointed out inSection 2, liquidity preference is not affected in the same way by capital gains
and losses. Thus, while positive returns affect the opportunity cost of money and so determine a
movement along a stable relationship, the precautionary attitude of decision makers depends on
negative returns, as does theshapeof the money demand (seeEquation 2). The first adjustment
is supposed to occur instantaneously, while the second one is performed gradually, for it takes
time for investors to internalise new market conditions. Inpractice, both decisions are related to
different markets. Accordingly, the cost of equityr is represented by the average return over a
class of securities, other than cash, that can be regarded assubstitutes to money. On the other
hand, the liquidity preference function depends on the series of returns over a set of instruments
that are representative for the assumed exposures. Then thevariability showed by a representative
index of this class determines themarket volatilityσ.

Finally, as stated inEquation 3, in a Gaussian setting the expected value of the market portfolio
and the market variability are respectively given by the weighted average of individual means
and volatilities. Hence, the market uncertainty will be mainly determined by a single institution
or sector, in the case it contributes more to the aggregate exposure. Stability can be induced
in the whole market in this way. The same results are obtainedwhen individual exposures are
exponentiallyor Pareto distributed, for in both cases the risk parameters are aggregated when
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accounting for market behaviour. Moreover, the model accepts multiple equilibria, since different
combinations of the risk parameters may lead to the same market characterisation.

The terms under which market shocks affect individual expectations about risks will be deter-
mined by specific conditions, such as the state of aggregation, restrictions in the access to credit,
the distribution of information within the market and the skills and knowledge of investors. Thus,
changes in the aggregate monetary stock may induce intermediaries to prefer bigger or more ef-
ficient companies —flight to quality— a situation that may become more difficult according to
the availability of funds and possibly increment more the riskiness of less productive sectors of the
economy. In this way, within theimperfect competitionframework, a broader meaning is attached
to instability.

References

J. Atta-Mensah. Money demand and economic uncertainty. Technical Report 04-25, Bank of
Canada, July 2004.

L. Ball. Another look at long-run money demand.Journal of Monetary Economics, 47(1):31–44,
2001.

L. Ball. Short-run money demand. Technical Report 481, The Johns Hopkins University, Depart-
ment of Economics, August 2002.

C.F. Baum, M. Caglayan, N. Ozkan, and O. Talavera. The impactof macroeconomic uncertainty
on non-financial firms demand for liquidity. Technical Report 552, Boston College Department
of Economics, Dec 2002.

S.B. Carpenter and J. Lange. Money demand and equity markets. Technical Report No. 2003-03,
Board of Governors of the Federal Reserve System, October 2002.

W.G. Choi and S. Oh. A money demand function with output uncertainty, monetary uncertainty,
and financial innovations.Journal of Money, Credit and Banking, 35:685–709, 2003.

S. Collins and R. Anderson. Modeling U.S. households’ demands for liquid wealth in an era of
financial change.Journal of Money, Credit and Banking, 30(1):83–101, 1998.

J. Dhaene, M. Denuit, M. Goovaerts, R. Kaas, and D. Vyncke. The concept of comonotonicity in
actuarial science and finance: Theory.Insurance: Mathematics & Economics, 31:3–33, 2002.

J. Dhaene, M. Goovaerts, and R. Kaas. Economic capital allocation derived from risk measures.
North American Actuarial Journal, 7:44–59, 2003.

C. Dreger and J. Wolters. Investigating the M3 money demand in the euro area — new evidence
based on standard models. Technical Report 561, German Institute for Economic Research,
March 2006.



76 Fernando Mierzejewski

J.V. Duca. Financial technology shocks and the case of missing M2. Journal of Money, Credit and
Banking, 32(4):820–839, 2000.

M. Friedman. A theoretical framework for monetary analysis. The Journal of Political Economy,
78(2):193–238, 1970.

M.J. Goovaerts, E. Van den Borre, and R. Laeven. Managing economic and virtual economic
capital within financial conglomerates.North American Actuarial Journal, 9(3):77–89, 2005.

C. Greiber and W. Lemke. Money demand and macroeconomic uncertainty. Technical Report 26,
Deutsche Bundesbank, Research Centre, August 2005.

J.M. Keynes. The General Theory of Employment, Interest and Money.Cambridge University
Press, 1935.

R.C. Merton. A model of contract guarantees for credit-sensitive, opaque financial intermediaries.
European Finance Review, 1(1):1–13, 1997.

F. Mierzejewski. Economic capital allocation under liquidity constraints. In M. Vanmaele,
A. De Schepper, J. Dhaene, H. Reynaerts, W. Schoutens, and P.Van Goethem, editors,Pro-
ceedings of the 4th Actuarial and Financial Mathematics Day, pages 107–116, Brussels, 2006.
Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten.
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AVERAGED BOND PRICES IN GENERALIZED COX-INGERSOLL-ROSS MO DEL
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Abstract

In short rate interest models, the behaviour of the short rate is given by a stochastic differen-
tial equation (in one-factor models) or a system of stochastic differential equations (in multi-
factor models). Interest rates with different maturities are determined by bond prices, which
are solutions of the parabolic partial differential equation. We consider the generalized Cox-
Ingersoll-Ross model, where the short rate is a sum of two Bessel square root processes, which
evolve independently. The bond price is a function of maturity and of the level of each of the
components of the short rate. We do not observe all values necessary to obtain a bond price.
Therefore, we propose the averaging of the bond prices. We consider the limiting distribution
of the short rate components, conditioned to have the sum equal to the observable short rate
level. In this way, we obtain the averaged bond prices, whichdepend only on maturity and
short rate. We prove that there is no one-factor model yielding the same bond prices as with
the averaged values described above.

1. GENERALIZED COX-INGERSOLL-ROSS MODEL OF INTEREST RATES

Term structure models describe the dependence between the time to maturity of a discount bond
and its present price which implies the interest rate. Continuous short rate models are formulated
in terms of one or more stochastic differential equations for the instanteneous interest rater (short
rate). The bond prices, and hence the term structures of the interest rates, are then obtained by
solving the partial differential equation.

In one-factor models, the process describing the short rate, is given by

dr = α(t, r)dt + β(t, r)dw, (1)

1The author was supported by the VEGA grant 1/3767/06.
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whereα(t, r) andβ(t, r) are non-stochastic functions, andw is a Wiener process. Ifα(t, r) =
κ(θ − r), κ > 0, the process has the property of mean-reversion to the levelθ. A popular class
of models is obtained by takingσ(t, r) = σrγ. It includes the Vasicek model [γ = 0, see Vasicek
(1977)], and the Cox-Ingersoll-Ross (CIR) model [γ = 1

2
see Cox et al. (1985)]; for a comparison

of models with different values forγ, see e.g. Chan et al. (1992).
If the short rate evolves according to 1, then the discount bond with maturityT has the price

P (t, r) depending on the timet and the current level of the short rater. It is given by the following
partial differential equation:

−
∂P

∂t
+ (α − λβ)

∂P

∂r
+

1

2
β2

∂2P

∂r2
− rP = 0, t ∈ (0, T ) (2)

P (T, r) = 1, (3)

whereλ = λ(t, r) is the market price of risk. The interest rates are then obtained from the bond
prices byR(t, r) = − log P (t,r)

T−t
, see Kwok (1998).

For the specific choices of the market price of risk in Vasicekand CIR models, it is known that
the bond price can be written in closed form. Ifλ(t, r) = λ

√
r in the CIR model then the price of

the bond with time to maturityτ = T − t has the form

P (τ, r) = A(τ)e−B(τ)r .

The functionsA(τ) andB(τ) satisfy the following system of ordinary differential equations

Ȧ(τ) = κθA(τ)B(τ)

Ḃ(τ) = −(κ + λσ)B −
1

2
σ2B(τ)2 + 1 (4)

with initial conditionsA(0) = 1, B(0) = 0, which can be solved analytically.
There are several possibilities of generalizing one-factor models, leading to multifactor mod-

els: making a parameter of the one-factor model stochastic (e.g. stochastic volatility models An-
derson and Lund (1996), Fong and Vasicek (1991)), adding extra relevant quantities (consol rate in
Brennan and Schwartz (1982), European interest rate in Corzo Santamaria and Schwartz (2000),
Corzo Santamaria and Biscarri (2005)), composing the shortrate by means of more components
(generalized CIR model in Cox et al. (1985), consol rate and the spread between the short rate and
consol rate in Schaefer and Schwartz (1984), Christiansen (2002)), etc.

In the generalized CIR model, the short rater is the sum of two independent Bessel square root
processes:

r = r1 + r2, (5)

dr1 = κ1(θ1 − r1)dt + σ1

√
r1dw1,

dr2 = κ2(θ2 − r2)dt + σ2

√
r2dw2,

where the Wiener processesw1 andw2 are independent. If the market prices of risk corresponding
to r1 andr2 are taken to beλ1

√
r1 andλ2

√
r2, then the bond priceπ(τ, r1, r2) has the form

π(τ, r1, r2) = A(τ)e−B1(τ)r1−B2(τ)r2 , (6)

whereA(τ) = A1(τ)A2(τ) with A1(τ), A2(τ), B1(τ), B2(τ) the solutions of the systems of
ordinary differential equations (4) arising in the one-factor model, with the appropriate index.
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2. AVERAGING IN TWO-FACTOR MODELS

Since the components of the short rater1 andr2 are not observable and the observable variable
is only their sumr, an interesting question refers to the properties of the average of the two bond
prices conditioned on the given sum ofr1 andr2. This is motivated by several papers: e.g. Fouque
et al. (2003) with an averaging in stochastic volatility models of stock prices, or Cotton et al. (2004)
with an averaging in stochastic volatility models of bond prices (where the unobservable random
quantity is the volatility), which are used in the series expansion of the prices. The asymptotic
distribution of the hidden process is used. It can be justified if the processes have been evolving
for a sufficiently long time.

In the same way, we consider the limit distributions in the generalized CIR model. It is well
known that the limit distribution of a Bessel square root process is a gamma distribution. Hence
the limit distribution of each of the two ratesri (i = 1, 2) in (5) is given by

fi(ri) =
abi

i

Γ(bi)
e−airirbi−1

i

whereai = 2κi

σ2

i

, bi = 2κiθi

σ2

i

for ri > 0 and zero otherwise. The limit density ofr1 conditioned on
r1 + r2 = r is equal to

f(r1, r) =
f1(r1)f2(r − r1)
∫ r

0
f1(s)f2(r − s)ds

=
f1(r1)f2(r − r1)

M(r)
, (7)

where we usedM(r) for the denominator of the fraction in order to simplify the notations in the
computations hereafter. The bond price (6) can be written interms ofτ , r, r1 and the averaged
value is computed as

P (τ, r) =

∫ r

0

π(τ, r1, r − r1)f(r1, r)dr1. (8)

In the same way, the averaged term structure is given by

P (τ, r) =

∫ r

0

[

−
log π(τ, r1, r − r1)

τ

]

f(r1, r)dr1. (9)

In Fig. 1 we give an example, by showing the term structures obtained by the generalized CIR
model and the averaged term structure computed as describedabove.

3. THE MAIN RESULT

In this paper, we study the following problem: is it possibleto find functionsα andβ, see equation
(1), such that the bond prices are the same as the averaged prices from a two-factor CIR model as
in (5).
We restrict ourselves to a specific class of processes:

• drift and volatility of the process, as well as the market price of risk are time-independent;
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Figure 1: Examples of term structures corresponding to different pairs ofr1 and r2 such that
r1 + r2 = 0.04. The averaged term structure is in bold.

• for a zero level of short rate, we require the volatility to bezero; this condition ensures the
nonnegativity of the short rate;

• the volatility parametersσ are different for the two processes forming the short rate inthe
two-factor CIR model.

We start with the following result.

Theorem 3.1 If we assume that the functionsα, β, andλ only depend onr (and not onτ ), that
the functionsα, β, andλ are continuous inr = 0, thatβ(0) = 0, and thatσ1 6= σ2, then

(a) P (τ, r) → A(τ) asr → 0,

(b) ∂P
∂τ

(τ, r) → Ȧ(τ) asr → 0,

(c) ∂P
∂r

(τ, r) → −A(τ)
(

b1
b1+b2

B1(τ) + b2
b1+b2

B2(τ)
)

asr → 0,

(d) ∂2P
∂r2 (τ, r) is bounded in the neighbourhood ofr = 0.

For the proof, we need some properties of the Kummer confluenthypergeometric functions1F1,
which are recalled in the following lemma, see Abramovitz and Stegun (1972).

Lemma 3.2 The following equalities hold:

•

∫ r

0

e−axxb−1(r − x)cdx = rb+cΓ(b)Γ(1 + c)

Γ(1 + b + c)
1F1(b, 1 + b + c,−ar)

• 1F1(a, b, z) = 1 +
a

b
z +

a(a + 1)

b(b + 1)
z2 + · · · .
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Proof of theorem 3.1:
Firstly, we rewrite bothM(r) and the densityf(r1, r) by means of confluent hypergeometric func-
tions:

M(r) =

∫ r

0

f1(r1)f2(r − r1)dr1

=
ab1

1
ab2

2

Γ(b1 + b2)
e−a2rrb1+b2−1

1F1(b1, b1 + b2,−(a1 − a2)r)

and

f(r1, r) =
1

M(r)
f1(r1)f2(r − r1) (10)

=
1

1F1(b1, b1 + b2,−(a1 − a2)r)

Γ(b1 + b2)

Γ(b1)Γ(b2)

1

rb1+b2−1

[

e−(a1−a2)r1rb1−1

1
(r − r1)

b2−1
]

.

Now, we can prove the assertions of the theorem.

(a) Substituting (10) into the expression for the averaged bond price gives

P (τ, r) =

∫ r

0

π(τ, r1, r − r1)f(r1, r)dr1

= Ae−Br 1F1(b1, b1 + b2,−((B1 − B2) + (a1 − a2)r))

1F1(b1, b1 + b2,−(a1 − a2)r)
. (11)

Since both denominator and numerator of the fraction in (11)converge to one asr ap-
proaches zero, we have

lim
r→0

P (τ, r) = A(τ).

(b) We compute the derivative ofP with respect toτ :

∂P

∂τ
=

∫ r

0

∂π

∂τ
(τ, r1, r − r1)f(r1, r)dr1

= P (τ, r)

[(

Ȧ

A
− Ḃ2r

)

− (Ḃ1 − Ḃ2)

∫ r

0
r1π(τ, r1, r − r1)f(r1, r)dr1

∫ r

0
π(τ, r1, r − r1)f(r1, r)dr1

]

, (12)

whereȦ = ∂A
∂t

.
The numerator of the fraction in (12) is positive for allr > 0 and can be bounded from
above byr

∫ r

0
π(τ, r1, r − r1)f(r1, r)dr1. Hence the fraction is positive and bounded from

above byr, which implies that it converges to zero asr → 0. Since we already know that
P (τ, r) → A(τ) for r → 0, we obtain from (12) that

lim
r→

∂P

∂τ
(τ, r) = Ȧ(τ).
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(c) In the computation of the derivative∂P
∂r

∂P

∂r
=

∫ r

0

∂π

∂r
(τ, r1, r − r1)f(r1, r) + π(τ, r1, r − r1)

∂f

∂r
(r1, r)dr1 (13)

there are two derivatives which need further computation,∂π
∂r

and∂f

∂r
. Straightforward calcu-

lations show that
∂π

∂r
(τ, r1, r − r1) = −B2(τ)π(τ, r1, r − r1) (14)

and

∂f

∂r
(r1, r) =

f1(r1)f
′
2
(r − r1)

M(r)
−

f1(r1)f2(r − r1)

M2(r)
M ′(r)

= f(r1, r)

[

f ′
2
(r − r1)

f2(r − r1)
−

∫ r

0
f1(s)f

′
2
(r − s)ds

∫ r

0
f1(s)f2(r − s)ds

]

. (15)

Noting that
f ′

2
(x)

f2(x)
= −a2 + (b2 − 1)

1

x
,

equation (15) can be rewritten as

∂f

∂r
(r1, r) = f(r1, r)(b2 − 1)

[

1

r − r1

−

∫ r

0

1

r−s
f1(s)f2(r − s)ds

∫ r

0
f1(s)f2(r − s)ds

]

. (16)

Substituting (14) and (16) into (13) then yields (after rearrangement)

∂P

∂r
= P

[

−B2 + (b2 − 1)

(
∫ r

0

1

r−r1

π(τ, r1, r − r1)f(r1, r)dr1

∫ r

0
π(τ, r1, r − r1)f(r1, r)dr1

−

∫ r

0

1

r−r1

f1(r1)f2(r − r1)dr1

∫ r

0
f1(r1)f2(r − r1)dr1

)]

. (17)

Let us denote

X1 =

∫ r

0

1

r−r1

π(τ, r1, r − r1)f(r1, r)dr1

∫ r

0
π(τ, r1, r − r1)f(r1, r)dr1

, X2 =

∫ r

0

1

r−r1

f1(r1)f2(r − r1)dr1

∫ r

0
f1(r1)f2(r − r1)dr1

,

then,
∂P

∂r
= P (τ, r) [−B2 + (b2 − 1) (X1 − X2)] . (18)

The expressions for bothX1 andX2 can be written in terms of functions1F1:

X1 =
1

r

b1 + b2 − 1

b2 − 1
1F1(b1, b1 + b2 − 1,−((B1 − B2) + (a1 − a2)r))

1F1(b1, b1 + b2,−((B1 − B2) + (a1 − a2)r))
, (19)

and

X2 =
1

r

b1 + b2 − 1

b2 − 1
1F1(b1, b1 + b2 − 1,−(a1 − a2)r)

1F1(b1, b1 + b2,−(a1 − a2)r)
. (20)
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Hence

X1 − X2 =
∂P

∂r
=

1

r

b1 + b2 − 1

b2 − 1

[

G1

G2

−
G3

G4

]

,

where we denoted

G1 = 1F1(b1, b1 + b2 − 1,−((B1 − B2) + (a1 − a2))r),

G2 = 1F1(b1, b1 + b2,−((B1 − B2) + (a1 − a2))r),

G3 = 1F1(b1, b1 + b2 − 1,−(a1 − a2)r),

G4 = 1F1(b1, b1 + b2,−(a1 − a2)r). (21)

As G2G4 → 1 asr → 0, we need to computeG1G4 − G2G3 to be able to compute the limit
of (17). Starting from

G1 = 1 −
b1

b1 + b2 − 1
((B1 − B2) + (a1 − a2))r + o(r),

G2 = 1 −
b1

b1 + b2

((B1 − B2) + (a1 − a2))r + o(r),

G3 = 1 −
b1

b1 + b2 − 1
(a1 − a2)r + o(r),

G4 = 1 −
b1

b1 + b2

(a1 − a2)r + o(r), (22)

we have

G1G4 − G2G3 = r

(

−
b1

b1 + b2 − 1
+

b1

b1 + b2

)

+ o(r), (23)

and hence

X1 − X2 =
b1 + b2 − 1

b2 − 1

1

G2G4

[

(B1 − B2)

(

−
b1

b1 + b2 − 1
+

b1

b1 + b2

)

+
o(r)

r

]

resulting in

lim
r→0

X1 − X2 =
b1 + b2 − 1

b2 − 1
(B1 − B2)

(

−
b1

b1 + b2 − 1
+

b1

b1 + b2

)

.

Finally, we can compute the limit of (17) as follows:

lim
r→0

∂P

∂r
(τ, r) = lim

r→0

P (τ, r) [−B2 + (b2 − 1) (X1 − X2)]

= A

[

−B2 + (b1 + b2 − 1)(B1 − B2)

(

−
b1

b1 + b2 − 1
+

b1

b1 + b2

)]

= −A

[

b1

b1 + b2

B1 +
b2

b1 + b2

B2

]

.
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(d) We show that there is a finite limit of∂
2P

∂r2 (τ, r) as r → 0, from which the boundedness
follows.
From (17) we know that

∂2P

∂r2
=

∂P

∂r
[−B2 + (b2 − 1) (X1 − X2)] + P

∂ [−B2 + (b2 − 1) (X1 − X2)]

∂r
.

From the definition ofX1 andX2 and from their limits, it follows that it is sufficient to show
the existence of the finite limit of∂

∂r

(

1

r
F (r)

)

for r → 0+, where

F (r) =
G1(r)

G2(r)
−

G3(r)

G4(r)
. (24)

With F (r) written by means of a series expansionF (r) =
∑

∞

k=0
akr

k, the conditiona0 = 0
is sufficient for boundedness of the term∂

∂r

(

1

r
F (r)

)

in the neighbourhood ofr = 0, which
holds for (24).

This leads us to the main result of this paper.

Theorem 3.3 Under the hypotheses of theorem 3.1, there is no one-factor interest rate model for
which the averaged bond prices satisfy the PDE up to the boundary r = 0.

Proof. By taking the limitr → 0 in the PDE (2), we know from the previous theorem that for all
τ > 0

−Ȧ(τ) + α(r = 0)(−A(τ))

(

b1

b1 + b2

B1(τ) +
b2

b1 + b2

B2(τ)

)

= 0.

From this we calculate the value of the functionα for r = 0:

α(r = 0) = −
Ȧ(τ)

A(τ)

1
b1B1(τ)

b1+b2
+ b2B2(τ)

b1+b2

= −
Ȧ(τ)

A(τ)

b1 + b2

b1B1(τ) + b2B2(τ)
.

This means that

−
Ȧ(τ)

A(τ)

b1 + b2

b1B1(τ) + b2B2(τ)
= K1 (25)

is a constant, independent ofτ .
Now we use the fact that the functionA(τ) in the two-factor CIR model can be written as

A(τ) = A1(τ)A2(τ), whereA1(τ) andA2(τ) are functions of the original CIR models, corre-
sponding to each of the equations forr1 andr2. Hence they satisfy

Ȧi(τ) = κiθiAi(τ)Bi(τ) (i = 1, 2)

and so we get

Ȧ(τ)

A(τ)
=

˙A1(τ)A2(τ) + A1(τ)Ȧ2(τ)

A1(τ)A2(τ)
=

Ȧ1(τ)

A1(τ)
+

˙A2(τ)

A2(τ)
= κ1θ1B1(τ) + κ2θ2B2(τ).
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The expression in (25) can be rewritten as

K1 = −
Ȧ(τ)

A(τ)

b1 + b2

b1B1(τ) + b2B2(τ)
= −(κ1θ1B1(τ) + κ2θ2B2(τ))

b1 + b2

b1B1(τ) + b2B2(τ)
.

Sinceb1 +b2 is constant, the important part is the following fraction, which has to be equal to some
constantK:

κ1θ1B1(τ) + κ2θ2B2(τ)

b1B1(τ) + b2B2(τ)
= K.

It implies that
κ1θ1B1(τ) + κ2θ2B2(τ) = K(b1B1(τ) + b2B2(τ))

and so
(κ1θ1 − Kb1)B1(τ) = (Kb2 − κ2θ2)B2(τ)

for eachτ > 0. This is only possible in two cases:

1. κ1θ1 − Kb1 = 0 andKb2 − κ2θ2 = 0,

2. B1(τ) = cB2(τ) for some constantc.

Let us look at each of these possibilities.

1. The same constantK appears in both conditions. From the first one we getK = κ1θ1

b1
and by

substituting the value ofb1 = 2κ1θ1

σ2

1

, we obtainK =
σ2

1

2
. In the same way, from the second

equality we obtainK =
σ2

2

2
. However, we started from the hypothesis thatσ2

1
6= σ2

2
, and thus

we find a contradiction.

2. We recall the equations forB1 andB2 from the CIR model:

−Ḃi(τ) = (κi + λiσi)Bi(τ) +
1

2
σ2

i Bi(τ)2 − 1. (26)

If B1(τ) = cB2(τ), it follows that

c

[

(κ2 + λ2σ2)B2(τ) +
1

2
σ2B2(τ)2 − 1

]

= (κ1 + λ1σ1)B1(τ) +
1

2
σ2

1
B1(τ)2 − 1

for all τ > 0. By continuity, the equality also holds for the limitτ = 0+. Taking this limit,
we getc = 1, and hence the functionsB1(τ) andB2(τ) coincide. We denote this function
by B(τ). Subtracting the two equations in (26), we obtain:

[−(κ1 + λ1σ1) + (κ2 + λ1σ1)]B(τ) +

[

−
1

2
σ2

1
+

1

2
σ2

2

]

B2(τ) = 0

and dividing byB(τ) (which is nonzero)

[−(κ1 + λ1σ1) + (κ2 + λ1σ1)] −
1

2

[

σ2

2
− σ2

1

]

B(τ) = 0.

Sinceσ1 6= σ2, this implies thatB(τ) is a constant function, which is a contradiction.

Since both possibilities lead to a contradiction, the theorem is proved.
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4. CONCLUSION

In this paper, we considered two-factor Cox-Ingersoll-Ross models for interest rates and averaged
bond prices with respect to the asymptotic distribution of the short rate processes, conditioned
on the observable short rate level. Such averaged values arefunctions of the maturity and of the
short rate, just as the solutions of one-factor models. Hence we studied the question, whether there
would be a one-factor model yielding the same bond prices as those obtained by averaging in the
two-factor Cox-Ingersoll-Ross model. We proved that the answer is negative. In the future, we
plan to study this question also for other two-factor models.
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