29,616 research outputs found

    Contact process on a Voronoi triangulation

    Full text link
    We study the continuous absorbing-state phase transition in the contact process on the Voronoi-Delaunay lattice. The Voronoi construction is a natural way to introduce quenched coordination disorder in lattice models. We simulate the disordered system using the quasistationary simulation method and determine its critical exponents and moment ratios. Our results suggest that the critical behavior of the disordered system is unchanged with respect to that on a regular lattice, i.e., that of directed percolation

    Magnetization profile for impurities in graphene nanoribbons

    Full text link
    The magnetic properties of graphene-related materials and in particular the spin-polarised edge states predicted for pristine graphene nanoribbons (GNRs) with certain edge geometries have received much attention recently due to a range of possible technological applications. However, the magnetic properties of pristine GNRs are not predicted to be particularly robust in the presence of edge disorder. In this work, we examine the magnetic properties of GNRs doped with transition-metal atoms using a combination of mean-field Hubbard and Density Functional Theory techniques. The effect of impurity location on the magnetic moment of such dopants in GNRs is investigated for the two principal GNR edge geometries - armchair and zigzag. Moment profiles are calculated across the width of the ribbon for both substitutional and adsorbed impurities and regular features are observed for zigzag-edged GNRs in particular. Unlike the case of edge-state induced magnetisation, the moments of magnetic impurities embedded in GNRs are found to be particularly stable in the presence of edge disorder. Our results suggest that the magnetic properties of transition-metal doped GNRs are far more robust than those with moments arising intrinsically due to edge geometry.Comment: submitte

    A model for Hopfions on the space-time S^3 x R

    Full text link
    We construct static and time dependent exact soliton solutions for a theory of scalar fields taking values on a wide class of two dimensional target spaces, and defined on the four dimensional space-time S^3 x R. The construction is based on an ansatz built out of special coordinates on S^3. The requirement for finite energy introduces boundary conditions that determine an infinite discrete spectrum of frequencies for the oscillating solutions. For the case where the target space is the sphere S^2, we obtain static soliton solutions with non-trivial Hopf topological charges. In addition, such hopfions can oscillate in time, preserving their topological Hopf charge, with any of the frequencies belonging to that infinite discrete spectrum.Comment: Enlarged version with the time-dependent solutions explicitly given. One reference and two eps figures added. 14 pages, late

    Impurity segregation in graphene nanoribbons

    Full text link
    The electronic properties of low-dimensional materials can be engineered by doping, but in the case of graphene nanoribbons (GNR) the proximity of two symmetry-breaking edges introduces an additional dependence on the location of an impurity across the width of the ribbon. This introduces energetically favorable locations for impurities, leading to a degree of spatial segregation in the impurity concentration. We develop a simple model to calculate the change in energy of a GNR system with an arbitrary impurity as that impurity is moved across the ribbon and validate its findings by comparison with ab initio calculations. Although our results agree with previous works predicting the dominance of edge disorder in GNR, we argue that the distribution of adsorbed impurities across a ribbon may be controllable by external factors, namely an applied electric field. We propose that this control over impurity segregation may allow manipulation and fine-tuning of the magnetic and transport properties of GNRs.Comment: 5 pages, 4 figures, submitte

    Unidentified Galactic High-Energy Sources as Ancient Pulsar Wind Nebulae in the light of new high energy observations and the new code

    Full text link
    In a Pulsar Wind Nebula (PWN), the lifetime of inverse Compton (IC) emitting electrons exceeds the lifetime of its progenitor pulsar (as well as its shell-type remnant), but it also exceeds the age of those that emit via synchrotron radiation. Therefore, during its evolution, the PWN can remain bright in IC so that its GeV-TeV gamma-ray flux remains high for timescales much larger (for 10^5 - 10^6 yrs) than the pulsar lifetime and the X-ray PWN lifetime. In this scenario, the magnetic field in the cavity induced by the wind of the progenitor star plays a crucial role. This scenario is in line with the discovery of several unidentified or "dark" sources in the TeV gamma-ray band without X-ray counterparts; and it is also finding confirmation in the recent discoveries at GeV gamma rays. Moreover, these consequences could be also important for reinterpreting the detection of starburst galaxies in the TeV gamma-ray band when considering a leptonic origin of the gamma-ray signal. Both theoretical aspects and their observational proofs will be discussed, as well as the first results of our new modeling code.Comment: Proceedings of the 5th International Symposium on High-Energy Gamma-Ray Astronomy (Gamma2012

    Local roughness exponent in the nonlinear molecular-beam-epitaxy universality class in one-dimension

    Get PDF
    We report local roughness exponents, αloc\alpha_{\text{loc}}, for three interface growth models in one dimension which are believed to belong the non-linear molecular-beam-epitaxy (nMBE) universality class represented by the Villain-Lais-Das Sarma (VLDS) stochastic equation. We applied an optimum detrended fluctuation analysis (ODFA) [Luis et al., Phys. Rev. E 95, 042801 (2017)] and compared the outcomes with standard detrending methods. We observe in all investigated models that ODFA outperforms the standard methods providing exponents in the narrow interval αloc∈[0.96,0.98]\alpha_{\text{loc}}\in[0.96,0.98] consistent with renormalization group predictions for the VLDS equation. In particular, these exponent values are calculated for the Clarke-Vvdensky and Das Sarma-Tamborenea models characterized by very strong corrections to the scaling, for which large deviations of these values had been reported. Our results strongly support the absence of anomalous scaling in the nMBE universality class and the existence of corrections in the form αloc=1−ϵ\alpha_{\text{loc}}=1-\epsilon of the one-loop renormalization group analysis of the VLDS equation
    • …
    corecore