24 research outputs found

    Interaction of Mitochondrial and Epigenetic Regulation in Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is a pathology preceded mainly by cirrhosis of diverse etiology and is associated with uncontrolled dedifferentiation and cell proliferation processes. Many cellular functions are dependent on mitochondrial function, among which we can mention the enzymatic activity of PARP-1 and sirtuin 1, epigenetic regulation of gene expression, apoptosis, and so on. Mitochondrial dysfunction is related to liver diseases including cirrhosis and HCC; the energetic demand is not properly supplied and mitochondrial morphologic changes have been observed, resulting in an altered metabolism. There is a strong relationship between epigenetics and mitochondrion since the first one is dependent on the correct function of the last one. There is an interest to improve or to maintain mitochondrial integrity in order to prevent or reverse HCC; such is the case of IFC-305 that has a beneficial effect on mitochondrial function in a sequential model of cirrhosis-HCC. In this model, IFC-305 downregulates the expression of PCNA, thymidylate synthase, HGF and its receptor c-Met and upregulates the cell cycle inhibitor p27, thereby decreasing cell proliferation. Both effects, improvement of mitochondria function and reduction of tumor proliferation, suggest its use as HCC chemoprevention or as an adjuvant in chemotherapy

    Molecular and Cellular Aspects of Cirrhosis and How an Adenosine Derivative Could Revert Fibrosis

    Get PDF
    Hepatic fibrosis occurs in response to persistent liver damage and is characterized by an excessive accumulation of extracellular matrix. When the damage is prolonged, there is a chronic inflammation and persistent hepatic fibrosis eventually leads to cirrhosis, where in addition to the scar, there is an important vascular remodeling associated with portal hypertension and, if decompensated, leads to death or can develop hepatocellular carcinoma. We have been studying the pharmacologic functions of adenosine, finding that a derivative of this nucleoside, IFC-305, shows hepatoprotective effects in a CCl4-induced rat cirrhosis model where it reverses liver fibrosis through modulation of fibrosis-related genes and by ameliorating hepatic function. Furthermore, this compound has the property to rescue cell cycle inhibition in vivo, prevents hepatic stellate cell activation, modulates anti-inflammatory macrophage polarization, and favors a chromatin context that could decrease the genomic instability and characteristics of cirrhosis, enabling the recovery of gene expression profile. Here we show results that contribute to the comprehension of molecular and cellular mechanism of cirrhosis, give the opportunity to suggest biomarkers to the early diagnostic of this pathology, and constitute the fundaments to suggest IFC-305 as a coadjuvant for treatment of this disease

    Investigación y desarrollo de un fármaco para el tratamiento de la cirrosis

    No full text
    La cirrosis es una de las causas más comunes de muerte en el mundo ya que la disfunción hepática conduce a una condición letal. Su etiología es diversa y no existe un tratamiento efectivo para prevenir o revertir esta patología, sin embargo, el riesgo de complicaciones como sepsis, peritonitis, sangrados e hipertensión y desarrollo de carcinoma hepático aumenta. En esta nota describimos brevemente las características estructurales y funcionales del tejido hepático normal comparándolas con los cambios que ocurren a lo largo del desarrollo de esta patología. Comentamos el trabajo que hemos realizado en el laboratorio en un modelo experimental de hepatotoxicidad aguda y crónica usando al nucleósido adenosina como hepatoprotector. A través de sus efectos antifibrogénicos en el metabolismo de colágena estimula su degradación al disminuir los inhibidores y favorece la recuperación de la función hepática, principalmente su capacidad de regeneración. También comentamos aspectos importantes y necesarios que permitan la aplicación de estos hallazgos de investigación básica a un modelo experimental de pacientes con este padecimiento y enumeramos una serie de estudios de tipo farmacológico que permitirán la aplicación de este compuesto a pacientes

    Mitoepigenetics and hepatocellular carcinoma

    No full text
    Mitochondria are the center of energy production in eukaryotic cells and are crucial for several cellular processes. Dysfunctional mitochondria have been associated with cancer progression. Mitochondria contain their own circular DNA (mtDNA), which codes for 13 proteins, 2rRNA, 22tRNA and non-coding RNAs. Recent evidence showed the presence of 5-methylcytosine and 5-hydroximethylcytosine in mtDNA suggesting that the level of gene expression could be modulated like a nuclear DNA by direct epigenetic modifications. Mitoepigenetics is a bidirectional phenomenon in the epigenetic regulation of mitochondrial genes encoded in both the nucleus and the mitochondrion. This process is affected by SAM-mediated methylation and hydroxymethylation of mtDNA and by nuclear chromatin modulators from mitochondria, such as Acetyl-CoA and NAD+. There is some information about physiological and pathological methylated profiles, but information is scarce for hepatocellular carcinoma (HCC). The aim of this review is to summarize the mitoepigenetic knowledge in HCC already reported so far, through a keywords search in Medline. In addition, the deregulation of energy intermediaries needed for the mitoepigenetic regulation is described. As this is a new area of study, a rigorous analysis and careful interpretation and integration of results are needed

    Low biological fluctuation of mitochondrial CpG and non-CpG methylation at the single-molecule level

    Get PDF
    International audienceAbstract Mammalian cytosine DNA methylation (5mC) is associated with the integrity of the genome and the transcriptional status of nuclear DNA. Due to technical limitations, it has been less clear if mitochondrial DNA (mtDNA) is methylated and whether 5mC has a regulatory role in this context. Here, we used bisulfite-independent single-molecule sequencing of native human and mouse DNA to study mitochondrial 5mC across different biological conditions. We first validated the ability of long-read nanopore sequencing to detect 5mC in CpG (5mCpG) and non-CpG (5mCpH) context in nuclear DNA at expected genomic locations (i.e. promoters, gene bodies, enhancers, and cell type-specific transcription factor binding sites). Next, using high coverage nanopore sequencing we found low levels of mtDNA CpG and CpH methylation (with several exceptions) and little variation across biological processes: differentiation, oxidative stress, and cancer. 5mCpG and 5mCpH were overall higher in tissues compared to cell lines, with small additional variation between cell lines of different origin. Despite general low levels, global and single-base differences were found in cancer tissues compared to their adjacent counterparts, in particular for 5mCpG. In conclusion, nanopore sequencing is a useful tool for the detection of modified DNA bases on mitochondria that avoid the biases introduced by bisulfite and PCR amplification. Enhanced nanopore basecalling models will provide further resolution on the small size effects detected here, as well as rule out the presence of other DNA modifications such as oxidized forms of 5mC
    corecore