26 research outputs found

    Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation

    Full text link
    A recent study of soft X-ray absorption in native and hydrogenated coronene cations, C24_{24}H12+m+_{12+m}^+ m=0−7m=0-7, led to the conclusion that additional hydrogen atoms protect (interstellar) Polycyclic Aromatic Hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014)]. The present experiment with collisions between fast (30-200 eV) He atoms and pyrene (C16_{16}H10+m+_{10+m}^+, m=0m=0, 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.Comment: 10 pages, 5 figure

    Ultraslow radiative cooling of Cn-(n = 3–5)

    Get PDF
    Ultraslow radiative cooling lifetimes and adiabatic detachment energies for three astrochemically relevant anions, C−n (n = 3–5), are measured using the Double ElectroStatic Ion Ring ExpEriment (DESIREE) infrastructure at Stockholm University. DESIREE maintains a background pressure of ≈10−14 mbar and temperature of ≈13 K, allowing storage of mass-selected ions for hours and providing conditions coined a “molecular cloud in a box.” Here, we construct two-dimensional (2D) photodetachment spectra for the target anions by recording photodetachment signal as a function of irradiation wavelength and ion storage time (seconds to minute time scale). Ion cooling lifetimes, which are associated with infrared radiative emission, are extracted from the 2D photodetachment spectrum for each ion by tracking the disappearance of vibrational hot-band signal with ion storage time, giving 1e cooling lifetimes of 3.1 ± 0.1 s (C−3), 6.8 ± 0.5 s (C−4), and 24 ± 5 s (C−5). Fits of the photodetachment spectra for cold ions, i.e., those stored for at least 30 s, provide adiabatic detachment energies in good agreement with values from laser photoelectron spectroscopy on jet-cooled anions, confirming that radiative cooling has occurred in DESIREE. Ion cooling lifetimes are simulated using a simple harmonic cascade model, finding good agreement with experiment and providing a mode-by-mode understanding of the radiative cooling properties. The 2D photodetachment strategy and radiative cooling modeling developed in this study could be applied to investigate the ultraslow cooling dynamics of a wide range of molecular anions

    Sélectivité rovibrationnelle de l'ionisation de H2 en champ laser intense. Analyse détaillée de la dissociation induite par électron ou photon d'ions H2+ préparés par laser

    No full text
    Les dĂ©veloppements rĂ©cents dans le domaine des technologies laser ont ouvert d'intĂ©ressantes perspectives en ce qui concerne l'Ă©tude de molĂ©cules en champ Ă©lectromagnĂ©tique intense. Du point de vue de la thĂ©orie, seule la molĂ©cule la plus simple H2 et son ion H2+ ont Ă©tĂ© abondamment Ă©tudiĂ©s. ExpĂ©rimentalement, il est cependant malaisĂ© d'exposer un ion molĂ©culaire Ă  un champ laser intense et en particulier, d'en connaĂźtre et d'en contrĂŽler l'Ă©tat vibrationnel de dĂ©part. Un montage expĂ©rimental nous a permis de dĂ©terminer l'excitation vibrationnelle accompagnant l'ionisation de H2 par impulsions brĂšves et intenses. Les rĂ©sultats montrent une excitation beaucoup plus faible que celle supposĂ©e pendant plus de dix ans. Cette Ă©tude a dĂ©montrĂ© qu'il est possible de produire en abondance des ions molĂ©culaires dans un Ă©tat d'excitation vibrationnelle et rotationnelle bien prĂ©cis grĂące Ă  une rĂ©sonance avec un Ă©tat intermĂ©diaire Ă  fort caractĂšre de Rydberg. Des expĂ©riences nĂ©cessitant la sĂ©lection du niveau vibrationnel initial de l'ion sont alors rĂ©alisables. Nous avons ainsi pu mesurer, en injectant dans l'anneau de stockage TSR de Heidelberg les paquets d'ions produits par notre laser nanoseconde accordable, la section efficace de recombinaison dissociative et d'excitation dissociative de H2+, dans les Ă©tats quantiques v+=0 et 1, N+=1, 2 et 3, et d'en observer la dĂ©sexcitation vibrationnelle par collision avec des Ă©lectrons lents. Ces donnĂ©es sont du plus grand intĂ©rĂȘt car elles peuvent ĂȘtre directement comparĂ©es Ă  la thĂ©orie sans faire intervenir de moyenne thermodynamique. Nous pouvons aussi nous intĂ©resser au comportement d'ions parfaitement caractĂ©risĂ©s du point de vue de leur Ă©tat quantique en prĂ©sence d'un champ laser bref et intense, voire d'une sĂ©quence d'impulsions. Les expĂ©riences rĂ©alisĂ©es jusqu'ici ne concernent que des ions prĂ©parĂ©s par impact Ă©lectronique dans une distribution vibrationnelle de type Franck-Condon. Seuls les effets dus aux niveaux Ă©levĂ©s ont pu ĂȘtre mis en Ă©vidence, ce qui pourra ĂȘtre Ă©vitĂ© en produisant sĂ©lectivement H2+ dans les niveaux de vibration v+=0 ou 1. Des rĂ©sultats prĂ©liminaires ont Ă©tĂ© obtenus, et une technique de piĂ©geage a Ă©tĂ© Ă©laborĂ©e pour pouvoir rĂ©aliser de telles expĂ©riences dans l'avenir, combinant des lasers dont le taux de rĂ©pĂ©tition diffĂšre de plusieurs ordres de grandeur.(PHYS 3) -- UCL, 200

    Spontaneous dissociation and rovibrational structure of the metastableD2−anion

    No full text
    Long-lived rovibrational states of the metastable D2− molecular anion, with lifetimes of the order of microseconds, were studied by recording the time-of-flight difference between D and D− fragments produced by spontaneous dissociation of the D2− complex. The simulated time-of-flight spectrum was adjusted to the experimental results, allowing us to extract the resonance energy relative to the dissociation threshold. A single value was found, 22.8±0.3 meV, which is somewhat larger than resonance energies predicted by theory for long-lived D2− rovibrational states with (J,v) quantum numbers (37,0), (37,1), and (38,0) [Phys. Rev. A 75, 012507 (2007)]. This discrepancy seems due to the extreme sensitivity of these metastable states to minute features of the potential energy curve. The spectral feature is explained by the competition between autodetachment and spontaneous dissociation decay channels

    Branching ratio for O + H+3 forming OH+ + H2 and H2O+ + H

    Get PDF
    The gas-phase reaction of O+H+3 has two exothermic product channels, OH+8 +H2 and H2O++H. In the present study, we analyze experimental data from a merged-beams measurement to derive thermal rate coe_cients resolved by product channel for the temperature range from 10 to 1000 K. Published astrochemical models either ignore the second product channel or apply a temperature-independent branching ratio of 70% vs. 30% for the formation of OH+ 12 + H2 vs. H2O+ + H, respectively, which originates from a single experimental data point measured at 295 K. Our results are consistent with this data point, but show a branching ratio that varies with temperature reaching 58% vs. 42% at 10 K. We provide recommended rate coe_cients for the two product channels for two cases, one where the initial _ne-structure population of the O(3PJ ) reactant is in its J = 2 ground state and the other one where it is in thermal equilibrium

    Laser-intensity dependent vibrational excitation and alignment of molecular ions in the ultrafast multiphoton regime.

    No full text
    H2 molecules were ionized in the ultrafast ( approximately 150 fs) multiphoton regime (263 nm, approximately 10;{13} W cm;{-2}). Earlier experiments investigated the kinetic energies of electrons or ions only. Using a unique experiment, we show that the vibrational excitation of molecular ions contains essential information about the dynamics of the process. In addition, we prove some earlier interpretations wrong. A realistic model based on vibronically excited intermediates, Stark shifting into resonance, reproduces the measurements, demonstrating that resonances continue to be important in the femtosecond regime. This eventually enables ultrafast control of the vibrational excitation of molecular ions, which is relevant to the whole field of molecular physics and physical chemistry

    Laboratory studies into the cosmic origins of organic chemistry

    No full text
    We have constructed a novel merged-beams apparatus to study the cosmic origins of organic chemistry. Here we report rate coefficients measurements for reactions of atomic C with H3+. These data are important for astrochemical models

    Experimental study of the proton-transfer reaction C + H 2 + → CH + + H and its isotopic variant (D 2 + )

    No full text
    We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of E r ∌ 0.01–10 eV
    corecore