25 research outputs found

    Prevalence and incidence of, and risk factors for chronic cough in the adult population : the Rotterdam Study

    Get PDF
    Chronic cough is a common complaint in the general population but there are no precise data on the incidence of, and prospectively examined risk factors for chronic cough in a population-based setting. Therefore, we investigated the period prevalence, incidence and risk factors for chronic cough in adult subjects. In a prospective population-based cohort study among subjects aged >= 45 years, data on chronic cough were collected on two separate occasions using a standardised questionnaire. Chronic cough was defined as daily coughing for at least 3 months duration during the preceding 2 years. Potential risk factors were gathered by interview, physical examination and several investigations. Of the 9824 participants in this study, 1073 (10.9%) subjects had chronic cough at baseline. The prevalence of chronic cough increased with age and peaked in the eighth decade. In subjects aged <70 years, chronic cough was more common in women. During an average follow-up of 6 years, 439 incident cases of chronic cough occurred with an overall incidence rate of 11.6 per 1000 person-years (95% CI 10.6-12.8). In current smokers, the incidence of chronic cough was higher in men. In the multivariable analysis, current smoking, gastro-oesophageal reflux disease (GORD), asthma and COPD were identified as risk factors for chronic cough. Chronic cough is common among adults and highly prevalent in the older population. Current smoking, GORD, asthma and COPD are independent risk factors for chronic cough. Individuals at risk of developing chronic cough may benefit from smoking cessation and control of the underlying disease

    Multi-ancestry genome-wide association study of asthma exacerbations

    Get PDF
    Asthma exacerbations; Single-nucleotide polymorphismExacerbaciones del asma; Polimorfismo de un solo nucleótidoExacerbacions de l'asma; Polimorfisme d'un sol nucleòtidBackground Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. Methods A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10−5) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. Results One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (ORT allele) = 0.82, p = 9.05 × 10−6 and replication: ORT allele = 0.89, p = 5.35 × 10−3) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: ORC allele = 0.85, p = 3.10 × 10−5 and replication: ORC allele = 0.89, p = 1.30 × 10−2). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. Conclusions This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense.This work was funded by the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033, and the European Regional Development Fund “ERDF A way of making Europe” by the European Union (SAF2017-83417R), by MCIN/AEI/10.13039/501100011033 (PID2020-116274RB-I00) and by the Allergopharma-EAACI award 2021. This study was also supported by the SysPharmPedia grant from the ERACoSysMed 1st Joint Transnational Call from the European Union under the Horizon 2020. GALA II and SAGE studies were supported by the Sandler Family Foundation, the American Asthma Foundation, the RWJF Amos Medical Faculty Development Program, Harry Wm. and Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II, the National Heart, Lung, and Blood Institute of the National Institutes of Health (R01HL117004, R01HL128439, R01HL135156, X01HL134589, R01HL141992, and R01HL141845), National Institute of Health and Environmental Health Sciences (R01ES015794 and R21ES24844); the National Institute on Minority Health and Health Disparities (NIMHD) (P60MD006902, R01MD010443, and R56MD013312); the National Institute of General Medical Sciences (NIGMS) (RL5GM118984); the Tobacco-Related Disease Research Program (24RT-0025 and 27IR-0030); and the National Human Genome Research Institute (NHGRI) (U01HG009080) to EGB. The PACMAN study was funded by a strategic alliance between GlaxoSmithKline and Utrecht Institute for Pharmaceutical Sciences. The Slovenia study was financially supported by the Slovenian Research Agency (research core funding No. P3-0067) and from SysPharmPediA grant, co-financed by the Ministry of Education, Science and Sport Slovenia (MIZS) (contract number C3330-16-500106). The SHARE Bioresource (GoSHARE) and SHARE have ongoing funding from NHS Research Scotland and were established by funding from The Wellcome Trust Biomedical Resource [Grant No. 099177/Z/12/Z]. Genotyping of samples from BREATHE, PAGES, and GoSHARE was funded by AC15/00015 and conducted at the Genotyping National Centre (CeGEN) CeGen-PRB3-ISCIII; supported by ISCIII and European Regional Development Fund (ERDF) (PT17/0019). ALSPAC was supported by the UK Medical Research Council and Wellcome (102215/2/13/2) and the University of Bristol. The Swedish Heart-Lung Foundation, the Swedish Research Council, and Region Stockholm (ALF project and database maintenance) funded the BAMSE study. The PASS study was funded by the NHS Chair of Pharmacogenetics via the UK Department of Health. U-BIOPRED was funded by the Innovative Medicines Initiative (IMI) Joint Undertaking, under grant agreement no. 115010, resources for which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and kind contributions from companies in the European Federation of Pharmaceutical Industries and Associations (EFPIA). Genotyping of samples from GEMAS and MEGA studies was funded by the Spanish Ministry of Science and Innovation (SAF2017-87417R) at the Spanish National Cancer Research Centre, in the Human Genotyping lab, a member of CeGen, PRB3, and was supported by grant PT17/0019, of the PE I+D+i 2013-2016, funded by ISCIII and ERDF. The genotyping of GEMAS was also partially funded by Fundación Canaria Instituto de Investigación Sanitaria de Canarias (PIFIISC19/17). The Rotterdam Study was funded by Erasmus Medical Center and Erasmus University Rotterdam; Netherlands Organization for the Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly (RIDE); the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. ALLIANCE Cohort was funded by grants from the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) as part of the German Centre for Lung Research (DZL) funding. The Hartford-Puerto Rico study was funded by the U.S. National Institutes of Health (grant HL07966 to JCC). MP-Y was funded by the Ramón y Cajal Program (RYC-2015-17205) by MCIN/AEI/10.13039/501100011033 and by the European Social Fund “ESF Investing in your future”. MP-Y and JV were supported by CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Spain (CB/06/06/1088). EH-L was supported by a fellowship awarded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future” (PRE2018-083837). JP-G was supported by a fellowship awarded by Spanish Ministry of Universities (FPU19/02175). AE-O reports funding from the Spanish Ministry of Science, Innovation, and Universities (MICIU) and Universidad de La Laguna (ULL). NH-P was supported by a Medium-Term Research Fellowship by the European Academy of Allergy and Clinical Immunology (EAACI) and a Long-Term Research Fellowship by the European Respiratory Society (ERS) (LTRF202101-00861). UP and MG were supported by the Ministry of Education, Science and Sport of the Republic of Slovenia, grant PERMEABLE (contract number C3330-19-252012). SCSGES results were contributed by authors FTC and YYS. FTC has received research support from the Singapore Ministry of Education Academic Research Fund, Singapore Immunology Network (SIgN), National Medical Research Council (NMRC) (Singapore), Biomedical Research Council (BMRC) (Singapore), and the Agency for Science Technology and Research (A*STAR) (Singapore); Grant Numbers: N-154-000-038-001, R-154-000-191-112, R-154-000-404-112, R-154-000-553-112, R-154-000-565-112, R-154-000-630-112, R-154-000-A08-592, R-154-000-A27-597, R-154-000-A91-592, R-154-000-A95-592, R-154-000-B99-114, BMRC/01/1/21/18/077, BMRC/04/1/21/19/315, SIgN-06-006, SIgN-08-020, NMRC/1150/2008, and H17/01/a0/008. F.T.C. has received consulting fees from Sime Darby Technology Centre; First Resources Ltd; Genting Plantation, and Olam International, outside the submitted work. YYS has received research support from the NUS Resilience & Growth Postdoctoral Fellowships with grant number: R-141-000-036-281. QY conducted the analysis from Hartford-Puerto Rico and United Kingdom Biobank studies. QY was funded by the U.S. National Institutes of Health (HL138098)

    Assessment of correlates of hand hygiene compliance among final year medical students: a cross-sectional study in the Netherlands

    Get PDF
    OBJECTIVES: To identify the factors that influence the hand hygiene compliance of final year medical students, using a theoretical behavioural framework. DESIGN: Cross-sectional survey assessing self-reported compliance and its behavioural correlates. SETTING: Internships of medical students in the Netherlands. PARTICIPANTS: 322 medical students of the Erasmus Medical Center were recruited over a period of 12 months during the Public Health internship, which is the final compulsory internship after an 18-month rotation schedule in all major specialities. PRIMARY AND SECONDARY OUTCOME MEASURES: Behavioural factors influencing compliance to hand hygiene guidelines were measured by means of a questionnaire based on the Theory of Planned Behaviour and Social Ecological Models. Multiple lin

    Pharmacogenetics of inhaled corticosteroids and exacerbation risk in adults with asthma

    Get PDF
    Background: Inhaled corticosteroids (ICS) are a cornerstone of asthma treatment. However, their efficacy is characterized by wide variability in individual responses. Objective: We investigated the association between genetic variants and risk of exacerbations in adults with asthma and how this association is affected by ICS treatment. Methods: We investigated the pharmacogenetic effect of 10 single nucleotide polymorphisms (SNPs) selected from the literature, including SNPs previously associated with response to ICS (assessed by change in lung function or exacerbations) and novel asthma risk alleles involved in inflammatory pathways, within all adults with asthma from the Dutch population-based Rotterdam study with replication in the American GERA cohort. The interaction effects of the SNPs with ICS on the incidence of asthma exacerbations were assessed using hurdle models adjusting for age, sex, BMI, smoking and treatment step according to the GINA guidelines. Haplotype analyses were also conducted for the SNPs located on the same chromosome. Results: rs242941 (CRHR1) homozygotes for the minor allele (A) showed a significant, replicated increased risk for frequent exacerbations (RR = 6.11, P < 0.005). In contrast, rs1134481T allele within TBXT (chromosome 6, member of a family associated with embryonic lung development) showed better response with ICS. rs37973 G allele (GLCCI1) showed a significantly poorer response on ICS within the discovery cohort, which was also significant but in the opposite direction in the replication cohort. Conclusion: rs242941 in CRHR1 was associated with poor ICS response. Conversely, TBXT variants were associated with improved ICS response. These associations may reveal specific endotypes, potentially allowing prediction of exacerbation risk and ICS response

    Sarcopenia in COPD: a systematic review and meta-analysis

    Get PDF
    COPD is associated with a progressive loss of muscle mass and function. However, there is an unmet need to define and standardise methods to estimate the prevalence of sarcopenia in COPD patients.We performed a systematic review and meta-analysis of the prevalence of this extrapulmonary manifestation in COPD patients. We searched Embase, Medline (Ovid), CINAHL (EBSCO), Web of Science, Scopus and Google Scholar for studies published up to January 17, 2019, assessing sarcopenia in COPD patients based on low muscle mass and decreased muscle function. Interventional studies, in vitro experiments, protocols or reviews and meta-analyses were excluded. We estimated heterogeneity (I2) and assessed significance (Q) using a Chi-squared test for estimates obtained from random-effects models.4465 articles were initially identified. After removing the duplicates and applying the selection criteria, we reviewed 62 full-text articles. Finally, 10 articles (n=2565 COPD patients) were included in this systematic review and meta-analyses. Overall, the prevalence of sarcopenia in patients with COPD was 21.6% (95% CI 14.6-30.9%, I2=94%), ranging from 8% in population-based to 21% in clinic-based studies, and 63% in COPD patients residing in nursing homes.Sarcopenia is frequently observed in COPD patients, with varying prevalence across population settings. Sarcopenia in COPD should be assessed using standardised tests and cut-off points from sarcopenia consensus criteria for clinical practice and international comparisons

    Sarcopenia in older people with chronic airway diseases : the Rotterdam study

    Get PDF
    Sarcopenia is a heterogeneous skeletal muscle disorder involving the loss of muscle mass and function. However, the prevalence of sarcopenia based on the most recent definition remains to be determined in older people with chronic airway diseases. The aim was to evaluate sarcopenia prevalence and association with chronic airway diseases and its lung function in an older population, using the European Working Group on Sarcopenia in Older People 2 (EWGSOP2) criteria. We performed a cross-sectional analysis in 5082 participants (mean age 69.0 +/- 8.8 years, 56% females) from the Rotterdam Study. Participants with interpretable spirometry and an available assessment of sarcopenia were included. The appendicular skeletal muscle mass index (ASMI) and handgrip strength (HGS) were assessed using dual-energy X-ray absorptiometry (DXA) and a hydraulic hand dynamometer, respectively. We analysed the association between sarcopenia and chronic airway diseases by using regression models adjusted for age, sex, smoking status, total fat percentage and other relevant confounders. Participants with chronic airway diseases had higher prevalence of probable sarcopenia (12.0%, 95% CI 10.2-13.8) and confirmed sarcopenia (3.0%, 95% CI 2.1-3.9) than without. Chronic airway diseases were associated with "probable sarcopenia" (OR 1.28, 95% CI 1.02-1.60), "confirmed sarcopenia" (OR 2.13, 95% CI 1.33-3.43), reduced HGS (beta -0.51 (-0.90-0.11)) and reduced ASMI (beta -0.19 (-0.25-0.14)). Forced expiratory volume in 1 s <80% was associated with lower HGS (beta -1.03 (-1.75-0.31)) and lower ASMI (beta -0.25 (-0.36-0.15)) than forced expiratory volume in 1 s.80%. Sarcopenia was prevalent and associated with chronic airway diseases among older population. These results suggest the need for early diagnosis of sarcopenia in older people with chronic airway diseases by applying EWGSOP2 recommendations

    Lifetime risk and multimorbidity of non-communicable diseases and disease-free life expectancy in the general population : a population-based cohort study

    Get PDF
    Background : Non-communicable diseases (NCDs) are leading causes of premature disability and death worldwide. However, the lifetime risk of developing any NCD is unknown, as are the effects of shared common risk factors on this risk. Methods and findings : Between July 6, 1989, and January 1, 2012, we followed participants from the prospective Rotterdam Study aged 45 years and older who were free from NCDs at baseline for incident stroke, heart disease, diabetes, chronic respiratory disease, cancer, and neurodegenerative disease. We quantified occurrence/co-occurrence and remaining lifetime risk of any NCD in a competing risk framework. We additionally studied the lifetime risk of any NCD, age at onset, and overall life expectancy for strata of 3 shared risk factors at baseline: smoking, hypertension, and overweight. During 75,354 person-years of follow-up from a total of 9,061 participants (mean age 63.9 years, 60.1% women), 814 participants were diagnosed with stroke, 1,571 with heart disease, 625 with diabetes, 1,004 with chronic respiratory disease, 1,538 with cancer, and 1,065 with neurodegenerative disease. NCDs tended to co-occur substantially, with 1,563 participants (33.7% of those who developed any NCD) diagnosed with multiple diseases during follow-up. The lifetime risk of any NCD from the age of 45 years onwards was 94.0% (95% CI 92.9%-95.1%) for men and 92.8% (95% CI 91.8%-93.8%) for women. These risks remained high (> 90.0%) even for those without the 3 risk factors of smoking, hypertension, and overweight. Absence of smoking, hypertension, and overweight was associated with a 9.0-year delay (95% CI 6.3-11.6) in the age at onset of any NCD. Furthermore, the overall life expectancy for participants without these risk factors was 6.0 years (95% CI 5.2-6.8) longer than for those with all 3 risk factors. Participants aged 45 years and older without the 3 risk factors of smoking, hypertension, and overweight at baseline spent 21.6% of their remaining lifetime with 1 or more NCDs, compared to 31.8% of their remaining life for participants with all of these risk factors at baseline. This difference corresponds to a 2-year compression of morbidity of NCDs. Limitations of this study include potential residual confounding, unmeasured changes in risk factor profiles during follow-up, and potentially limited generalisability to different healthcare settings and populations not of European descent. Conclusions : Our study suggests that in this western European community, 9 out of 10 individuals aged 45 years and older develop an NCD during their remaining lifetime. Among those individuals who develop an NCD, at least a third are subsequently diagnosed with multiple NCDs. Absence of 3 common shared risk factors is associated with compression of morbidity of NCDs. These findings underscore the importance of avoidance of these common shared risk factors to reduce the premature morbidity and mortality attributable to NCDs

    Pharmacogenetics of inhaled corticosteroids and exacerbation risk in adults with asthma

    Get PDF
    Background: Inhaled corticosteroids (ICS) are a cornerstone of asthma treatment. However, their efficacy is characterized by wide variability in individual responses. Objective: We investigated the association between genetic variants and risk of exacerbations in adults with asthma and how this association is affected by ICS treatment. Methods: We investigated the pharmacogenetic effect of 10 single nucleotide polymorphisms (SNPs) selected from the literature, including SNPs previously associated with response to ICS (assessed by change in lung function or exacerbations) and novel asthma risk alleles involved in inflammatory pathways, within all adults with asthma from the Dutch population–based Rotterdam study with replication in the American GERA cohort. The interaction effects of the SNPs with ICS on the incidence of asthma exacerbations were assessed using hurdle models adjusting for age, sex, BMI, smoking and treatment step according to the GINA guidelines. Haplotype analyses were also conducted for the SNPs located on the same chromosome. Results: rs242941 (CRHR1) homozygotes for the minor allele (A) showed a significant, replicated increased risk for frequent exacerbations (RR = 6.11, P < 0.005). In contrast, rs1134481T allele within TBXT (chromosome 6, member of a family associated with embryonic lung development) showed better response with ICS. rs37973 G allele (GLCCI1) showed a significantly poorer response on ICS within the discovery cohort, which was also significant but in the opposite direction in the replication cohort. Conclusion: rs242941 in CRHR1 was associated with poor ICS response. Conversely, TBXT variants were associated with improved ICS response. These associations may reveal specific endotypes, potentially allowing prediction of exacerbation risk and ICS response

    Multi-ancestry genome-wide association study of asthma exacerbations

    Get PDF
    Altres ajuts: European Regional Development Fund "ERDF A way of making Europe"; Allergopharma-EAACI award 2021; SysPharmPedia grant from the ERACoSysMed 1st Joint Transnational Call from the European Union under the Horizon 2020; Sandler Family Foundation; American Asthma Foundation; RWJF Amos Medical Faculty Development Program; National Heart, Lung, and Blood Institute of the National Institutes of Health (R01HL117004, R01HL128439, R01HL135156, X01HL134589, R01HL141992, R01HL141845); National Institute of Health and Environmental Health Sciences (R01ES015794, R21ES24844); National Institute on Minority Health and Health Disparities (NIMHD) (P60MD006902, R01MD010443, R56MD013312); National Institute of General Medical Sciences (NIGMS) (RL5GM118984); Tobacco-Related Disease Research Program (24RT-0025, 27IR-0030); National Human Genome Research Institute (NHGRI) (U01HG009080); GlaxoSmithKline and Utrecht Institute for Pharmaceutical Sciences; Slovenian Research Agency (P3-0067); SysPharmPediA grant, co-financed by the Ministry of Education, Science and Sport Slovenia (MIZS) (C3330-16-500106); NHS Research Scotland; Wellcome Trust Biomedical Resource (099177/Z/12/Z); Genotyping National Centre (CeGEN) CeGen-PRB3-ISCIII (AC15/00015); UK Medical Research Council and Wellcome (102215/2/13/2); University of Bristol; Swedish Heart-Lung Foundation, Swedish Research Council; Region Stockholm (ALF project and database maintenance); NHS Chair of Pharmacogenetics via the UK Department of Health; Innovative Medicines Initiative (IMI) (115010); European Federation of Pharmaceutical Industries and Associations (EFPIA); Spanish National Cancer Research Centre; Fundación Canaria Instituto de Investigación Sanitaria de Canarias (PIFIISC19/17); Erasmus Medical Center; Erasmus University Rotterdam; Netherlands Organization for the Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly (RIDE); Ministry of Education, Culture and Science; Ministry for Health, Welfare and Sports; European Commission (DG XII); Municipality of Rotterdam; German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF); U.S. National Institutes of Health (HL07966); European Social Fund "ESF Investing in your future"; Ministerio de Ciencia, Innovación y Universidades; Universidad de La Laguna (ULL); European Academy of Allergy and Clinical Immunology (EAACI); European Respiratory Society (ERS) (LTRF202101-00861); Ministry of Education, Science and Sport of the Republic of Slovenia (C3330-19-252012); Singapore Ministry of Education Academic Research Fund; Singapore Immunology Network (SIgN); National Medical Research Council (NMRC Singapore); Biomedical Research Council (BMRC Singapore); Agency for Science Technology and Research (A*STAR Singapore, N-154-000-038-001, R-154-000-191-112, R-154-000-404-112, R-154-000-553-112, R-154-000-565-112, R-154-000-630-112, R-154-000-A08-592, R-154-000-A27-597, R-154-000-A91-592, R-154-000-A95-592, R-154-000-B99-114, BMRC/01/1/21/18/077, BMRC/04/1/21/19/315, SIgN-06-006, SIgN-08-020, NMRC/1150/2008, H17/01/a0/008); Sime Darby Technology Centre; First Resources Ltd; Genting Plantation; Olam International; U.S. National Institutes of Health (HL138098).Background: Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. Methods: A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. Results: One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (OR) = 0.82, p = 9.05 × 10 and replication: OR = 0.89, p = 5.35 × 10) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: OR = 0.85, p = 3.10 × 10 and replication: OR = 0.89, p = 1.30 × 10). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. Conclusions: This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense
    corecore