22 research outputs found

    A proportion of mutations fixed in the genomes of in vitro selected isogenic drug-resistant Mycobacterium tuberculosis mutants can be detected as minority variants in the parent culture.

    Get PDF
    We studied genomic variation in a previously selected collection of isogenic Mycobacterium tuberculosis laboratory strains subjected to one or two rounds of antibiotic selection. Whole genome sequencing analysis identified eleven single, unique mutations (four synonymous, six non-synonymous, one intergenic), in addition to drug resistance-conferring mutations, that were fixed in the genomes of six monoresistant strains. Eight loci, present as minority variants (five non-synonymous, three synonymous) in the genome of the susceptible parent strain, became fixed in the genomes of multiple daughter strains. None of these mutations are known to be involved with drug resistance. Our results confirm previously observed genomic stability for M. tuberculosis, although the parent strain had accumulated allelic variants at multiple locations in an antibiotic-free in vitro environment. It is therefore likely to assume that these so-called hitchhiking mutations were co-selected and fixed in multiple daughter strains during antibiotic selection. The presence of multiple allelic variations, accumulated under non-selective conditions, which become fixed during subsequent selective steps, deserves attention. The wider availability of 'deep' sequencing methods could help to detect multiple bacterial (sub)populations within patients with high resolution and would therefore be useful in assisting in the detailed investigation of transmission chains

    A Broad Set of Different Llama Antibodies Specific for a 16 kDa Heat Shock Protein of Mycobacterium tuberculosis

    Get PDF
    Background Recombinant antibodies are powerful tools in engineering of novel diagnostics. Due to the small size and stable nature of llama antibody domains selected antibodies can serve as a detection reagent in multiplexed and sensitive assays for M. tuberculosis. Methodology/Principal Findings Antibodies for Mycobacterium tuberculosis (M. tb) recognition were raised in Alpaca, and, by phage display, recombinant variable domains of heavy-chain antibodies (VHH) binding to M. tuberculosis antigens were isolated. Two phage display selection strategies were followed: one direct selection using semi-purified protein antigen, and a depletion strategy with lysates, aiming to avoid cross-reaction to other mycobacteria. Both panning methods selected a set of binders with widely differing complementarity determining regions. Selected recombinant VHHs were produced in E. coli and shown to bind immobilized lysate in direct Enzymelinked Immunosorbent Assay (ELISA) tests and soluble antigen by surface plasmon resonance (SPR) analysis. All tested VHHs were specific for tuberculosis-causing mycobacteria (M. tuberculosis, M. bovis) and exclusively recognized an immunodominant 16 kDa heat shock protein (hsp). The highest affinity VHH had a dissociation constant (KD) of 4×10-10 M. Conclusions/Significance A broad set of different llama antibodies specific for 16 kDa heat shock protein of M. tuberculosis is available. This protein is highly stable and abundant in M. tuberculosis. The VHH that detect this protein are applied in a robust SPR sensor for identification of tuberculosis-causing mycobacteria

    Bead Array Direct rRNA Capture Assay (rCapA) for Amplification Free Speciation of Mycobacterium Cultures

    Get PDF
    Mycobacterium cultures, from patients suspected of tuberculosis or nontuberculous mycobacteria (NTM) infection, need to be identified. It is most critical to identify cultures belonging to the Mycobacterium tuberculosis complex, but also important to recognize clinically irrelevant or important NTM to allow appropriate patient management. Identification of M. tuberculosis can be achieved by a simple and cheap lateral flow assay, but identification of other Mycobacterium spp. generally requires more complex molecular methods. Here we demonstrate that a paramagnetic liquid bead array method can be used to capture mycobacterial rRNA in crude lysates of positive cultures and use a robust reader to identify the species in a direct and sensitive manner. We developed an array composed of paramagnetic beads coupled to oligonucleotides to capture 16 rRNA from eight specific Mycobacterium species and a single secondary biotinilated reporter probe to allow the captured rRNA to be detected. A ninth less specific bead and its associated reporter probe, designed to capture 23S rRNA from mycobacteria and related genera, is included as an internal control to confirm the presence of bacterial rRNA from a GC rich Gram variable genera. Using this rRNA capture assay (rCapA) with the array developed we were already able to confirm the presence of members of the M. tuberculosis complex and to discriminate a range of NTM species. This approach is not based on DNA amplification and therefore does not require precautions to avoid amplicon contamination. Moreover, the new generation of stable and cost effective liquid bead readers provides the necessary multiplexing potential to develop a robust and highly discriminatory assay

    Results of hybridiations of, 31 Middlebrook cultures, 13 MGIT cultures, and 4 controls, to the 9 bead array.

    No full text
    <p>Fluorescence intensity in arbitrary units is indicated on the left hand side as determined by the MAGPIX machine, this data is visualized in the form of a “line probe assay” (Excel 2010, Microsoft, Seattle, USA) on the right hand side where the % of the total signal in each assay resulting from each specific bead is indicated as a grey scale (where <10% of total signal from a bead species is white, and >30% of total signal from a bead species is black).</p

    Effect of increasing lysis time on the yield of rRNA from an NTM (<i>M. avium</i>) and an <i>M. tuberculosis</i> culture.

    No full text
    <p>Solid lines and filled triangles/diamonds indicate the species specific bead signal, dashed lines and filled squares represent the 23S rRNA control signal, empty triangles indicate the average signal from the beads targeting other species (error bars +− one standard deviation). Lysis was performed at 30 Hz in the presence of Zirconium beads for pulses of 10 minutes. Aliquots of the prepared mycobacteria were removed after each period of shaking collected and analysed together in the rRNA capture MAGPIX assay. Upper graph <i>M. avium</i> lower graph <i>M. tuberculosis</i>.</p

    Effect of hybridisation time on the signal obtained for 3 independent experiments, error bars indicate +− one standard deviation.

    No full text
    <p>Effect of hybridisation time on the signal obtained for 3 independent experiments, error bars indicate +− one standard deviation.</p
    corecore