2,318 research outputs found

    Alignment issues in photonic crystal device fabrication

    Get PDF
    An important requirement in the fabrication of photonic crystal structures is the correct relative alignment of structural elements. Accuracy should be in the order of some tens of nanometres. Some of the options for providing such accuracy are discussed. Examples are given of aligning defects with respect to a predefined 2D lattice, aligning access waveguides with respect to a small local photonic crystal structure, and the alignment of successive periodically structured layers in a 3D "woodpile" structure

    The ring-opening polymerization of D,L-lactide in the melt initiated with tetraphenyltin

    Get PDF
    Melt polymerization conditions for D,L-lactide initiated with tetraphenyltin were studied with regard to polymer molecular weight and weight distributions. "Single" polymerization, "multiple"polymerization (four or eight reactions at the same time), and time-dependent studies are described. Single polymerizations using constant initiator concentrations resulted in a broad scattering of nonreproducible molecular weight values. Multiple polymerizations at constant initiator concentrations, however, resulted in nearly identical molecular weight profiles. Multiple polymerizations at different initiator concentrations did not show an inverse dependency of initiator concentration on polymer molecular weight. Both the single and multiple melt polymerizations resulted in rather broad molecular weight distributions. The presence of hydrolysis products of lactide during the melt polymerization most likely has a detrimental effect on molecular weight. After a short induction period the rather slow polymerization of D,L-lactide resulted in a maximal molecular weight followed by a slight decrease in molecular weight to a constant value. It is concluded that the polymerization of D,L-lactide in the melt initiated with tetraphenyltin does not proceed through a "living" mechanism

    Editors' Note

    Get PDF

    Editorial

    Get PDF

    Multiperiodicity in the large-amplitude rapidly-rotating β\beta Ceph ei star HD 203664

    Get PDF
    We perform a seismic study of the young massive β\beta Cephei star HD 203664 with the goal to constrain its interior structure. Our study is based on a time series of 328 new Geneva 7-colour photometric data of the star spread over 496.8 days. The data confirm the frequency of the dominant mode of the star which we refine to f1=6.02885f_1=6.02885 c d1^{-1}. The mode has a large amplitude of 37 mmag in V and is unambiguously identified as a dipole mode (=2\ell=2) from its amplitude ratios and non-adiabatic computations. Besides f1f_1, we discover two additional new frequencies in the star with amplitudes above 4σ4\sigma: f2=6.82902f_2=6.82902 c d1^{-1} and f3=4.81543f_3=4.81543 c d1^{-1} or one of their daily aliases. The amplitudes of these two modes are only between 3 and 4 mmag which explains why they were not detected before. Their amplitude ratios are too uncertain for mode identification. We show that the observed oscillation spectrum of HD 203664 is compatible with standard stellar models but that we have insufficient information for asteroseismic inferences. Among the large-amplitude β\beta Cephei stars, HD 203664 stands out as the only one rotating at a significant fraction of its critical rotation velocity (40\sim 40%).Comment: 7 pages, 5 figures, accepted for publication in A&A (Astronomy & Astrophysics

    Antenna subtraction with massive fermions at NNLO: Double real initial-final configurations

    Full text link
    We derive the integrated forms of specific initial-final tree-level four-parton antenna functions involving a massless initial-state parton and a massive final-state fermion as hard radiators. These antennae are needed in the subtraction terms required to evaluate the double real corrections to ttˉt\bar{t} hadronic production at the NNLO level stemming from the partonic processes qqˉttˉqqˉq\bar{q}\to t\bar{t}q'\bar{q}' and ggttˉqqˉgg\to t\bar{t}q\bar{q}.Comment: 24 pages, 1 figure, 1 Mathematica file attache

    Realization of 2-dimensional air-bridge silicon photonic crystals by focused ion beam milling and nanopolishing

    Get PDF
    We report the design and fabrication of small photonic crystal structures which are combined with conventional dielectric ridge waveguides. We describe in details the fabrication of both rough and smooth membranes, which are used as host for photonic crystals. Two Focused Ion Beam milling experiments are highlighted: the first one shows how photonic crystals can be fast and accurate milled into a Si membrane, whereas the second experiment demonstrates how focused ion beam milling can turn a rough surface into a well-patterned nano-smooth surface. The previously ultra rough surface showed no detectable roughness after milling due to the nanopolishing effect of the focused ion beam milling

    Measurement of the strong coupling alpha_S from the three-jet rate in e+e- - annihilation using JADE data

    Get PDF
    We present a measurement of the strong coupling alpha_S using the three-jet rate measured with the Durham algorithm in e+e- -annihilation using data of the JADE experiment at centre-of-mass energies between 14 and 44 GeV. Recent theoretical improvements provide predictions of the three-jet rate in e+e- -annihilation at next-to-next-to-leading order. In this paper a measurement of the three-jet rate is used to determine the strong coupling alpha_s from a comparison to next-to-next-to-leading order predictions matched with next-to-leading logarithmic approximations and yields a value for the strong coupling alpha_S(MZ) = 0.1199+- 0.0010 (stat.) +- 0.0021 (exp.) +- 0.0054 (had.) +- 0.0007 (theo.) consistent with the world average.Comment: 27 pages, 8 figure

    Photon - Jet Correlations and Constraints on Fragmentation Functions

    Full text link
    We study the production of a large-pT photon in association with a jet in proton-proton collisions. We examine the sensitivity of the jet rapidity distribution to the gluon distribution function in the proton. We then assess the sensitivity of various photon + jet correlation observables to the photon fragmentation functions. We argue that RHIC data on photon-jet correlations can be used to constrain the photon fragmentation functions in a region which was barely accessible in LEP experiments.Comment: 23 pages, 9 figure
    corecore