22,991 research outputs found

    Marshall-Peierls sign rule for excited states of the frustrated J1-J2 Heisenberg antiferromagnet

    Full text link
    We present analytical and numerical calculations for some exited states of the frustrated J1-J2 spin-1/2 Heisenberg model for linear chains and square lattices. We consider the lowest eigenstates in the subspaces determined by the eigenvalue M of the spin operator S_total^z. Because of the reduced number of Ising basis states in the subspaces with higher M we are able to diagonalize systems with up to N=144 spins. We find evidence that the Marshall-Peierls sign rule survives for a relatively large frustration parameter J2.Comment: 7 pages, LaTeX, 4 eps figures, to appear in Physica

    Advancing the Empirical Research on Lobbying

    Get PDF
    This essay identifies the empirical facts about lobbying which are generally agreed upon in the literature. It then discusses challenges to empirical research in lobbying and provides examples of empirical methods that can be employed to overcome these challenges—with an emphasis on statistical measurement, identification, and casual inference. The essay then discusses the advantages, disadvantages, and effective use of the main types of data available for research in lobbying. It closes by discussing a number of open questions for researchers in the field and avenues for future work to advance the empirical research in lobbying

    The Complexity of Finding Small Triangulations of Convex 3-Polytopes

    Full text link
    The problem of finding a triangulation of a convex three-dimensional polytope with few tetrahedra is proved to be NP-hard. We discuss other related complexity results.Comment: 37 pages. An earlier version containing the sketch of the proof appeared at the proceedings of SODA 200

    Loschmidt echo decay from local boundary perturbations

    Get PDF
    We investigate the sensitivity of the time evolution of semiclassical wave packets in two-dimensional chaotic billiards with respect to local perturbations of their boundaries. For this purpose, we address, analytically and numerically, the time decay of the Loschmidt echo (LE). We find the LE to decay exponentially in time, with the rate equal to the classical escape rate from an open billiard obtained from the original one by removing the perturbation-affected region of its boundary. Finally, we propose a principal scheme for the experimental observation of the LE decay.Comment: Final version; 4 pages, 3 figure

    Interstellar absorptions towards the LMC: Small-scale density variations in Milky Way disc gas

    Full text link
    Observations show that the ISM contains sub-structure on scales less than 1 pc, detected in the form of spatial and temporal variations in column densities or optical depth. Despite the number of detections, the nature and ubiquity of the small-scale structure in the ISM is not yet fully understood. We use UV absorption data mainly from FUSE and partly from STIS of six LMC stars (Sk-67{\deg}111, LH54-425, Sk-67{\deg}107, Sk-67{\deg}106, Sk-67{\deg}104, and Sk-67{\deg}101), all located within 5 arcmin of each other, and analyse the physical properties of the Galactic disc gas in front of the LMC on sub-pc scales. We analyse absorption lines of a number of ions within the UV spectral range. Most importantly, interstellar molecular hydrogen, neutral oxygen, and fine-structure levels of neutral carbon have been used in order to study changes in the density and the physical properties of the Galactic disc gas over small angular scales. While most species do not show any significant variation in their column densities, we find an enhancement of almost 2 dex for H_2 from Sk-67{\deg}111 to Sk-67{\deg}101, accompanied by only a small variation in the OI column density. Based on the formation-dissociation equilibrium, we trace these variations to the actual density variations in the molecular gas. On the smallest spatial scale of < 0.08 pc, between Sk-67{\deg}107 and LH54-425, we find a gas density variation of a factor of 1.8. The line of sight towards LH54-425 does not follow the relatively smooth change seen from Sk-67{\deg}101 to Sk-67{\deg}111, suggesting that sub-structure might exist on a smaller spatial scale than the linear extent of our sight-lines. Our observations suggest that the detected H_2 in these six lines of sight is not necessarily physically connected, but that we are sampling molecular cloudlets with pathlengths < 0.1-1.8 pc and possibly different densities.Comment: 17 pages, 8 figures. Accepted for publication in A&

    High-velocity gas towards the LMC resides in the Milky Way halo

    Full text link
    To explore the origin of high-velocity gas in the direction of the Large Magellanic Cloud (LMC) we analyze absorption lines in the ultraviolet spectrum of a Galactic halo star that is located in front of the LMC at d=9.2 kpc distance. We study the velocity-component structure of low and intermediate metal ions in the spectrum of RXJ0439.8-6809, as obtained with the Cosmic Origins Spectrograph (COS) onboard HST, and measure equivalent widths and column densities for these ions. We supplement our COS data with a Far-Ultraviolet Spectroscopic Explorer spectrum of the nearby LMC star Sk-69 59 and with HI 21cm data from the Leiden-Argentina-Bonn (LAB) survey. Metal absorption towards RXJ0439.8-6809 is unambiguously detected in three different velocity components near v_LSR=0,+60, and +150 km/s. The presence of absorption proves that all three gas components are situated in front of the star, thus being located in the disk and inner halo of the Milky Way. For the high-velocity cloud (HVC) at v_LSR=+150 km/s we derive an oxygen abundance of [O/H]=-0.63 (~0.2 solar) from the neighbouring Sk-69 59 sightline, in accordance with previous abundance measurements for this HVC. From the observed kinematics we infer that the HVC hardly participates in the Galactic rotation. Our study shows that the HVC towards the LMC represents a Milky Way halo cloud that traces low-column density gas with relatively low metallicity. It rules out scenarios in which the HVC represents material close to the LMC that stems from a LMC outflow.Comment: 4 pages, 3 figures; submitted to A&A Letter

    Serotype epidemiology and multidrug resistance patterns of Salmonella enterica infecting humans in Italy

    Get PDF
    BACKGROUND: Salmonella enterica is the zoonotic agent most frequently responsible for foodborne infections in humans worldwide. In this work the presence of S. enterica was investigated in 734 unique enteropathogenic isolates collected from human patients between 2011 and 2012. RESULTS: All Salmonella spp. isolates were subjected to serotyping and antimicrobial susceptibility testing. Isolates displaying phenotypes and antimicrobial susceptibility profiles different from the reference strains were genotipically characterized. Several plasmid-embedded resistance determinants were identified and characterized. Non-typhoidal serotypes were most frequently diagnosed; monophasic Salmonella typhimurium 1,4 [5],12:i- and S. typhimurium represented the most prevalent serovars. Five isolates displayed phenotypes with extremely reduced susceptibility to antimicrobials: we detected multidrug resistance elements belonging to Ambler class A and class C in two non-typhoidal S. enterica serovars, i.e. Rissen and monophasic S. typhimurium 1,4 [5],12:i-, and in one typhoidal serovar, i.e., Paratyphi B. These resistance determinants have been so far almost exclusively associated with non-Salmonella members of the Enterobacteriaceae family. Alarmingly, two colistin resistant Salmonella enteritidis were also found. CONCLUSIONS: This work draws the attention to the still low, but rising, percentage of multidrug resistant Salmonella isolates infecting humans in Italy. Our results suggest that prompt monitoring of Salmonella serovar dissemination and resistance to antimicrobials is highly required

    Learning Dilation Factors for Semantic Segmentation of Street Scenes

    Full text link
    Contextual information is crucial for semantic segmentation. However, finding the optimal trade-off between keeping desired fine details and at the same time providing sufficiently large receptive fields is non trivial. This is even more so, when objects or classes present in an image significantly vary in size. Dilated convolutions have proven valuable for semantic segmentation, because they allow to increase the size of the receptive field without sacrificing image resolution. However, in current state-of-the-art methods, dilation parameters are hand-tuned and fixed. In this paper, we present an approach for learning dilation parameters adaptively per channel, consistently improving semantic segmentation results on street-scene datasets like Cityscapes and Camvid.Comment: GCPR201
    • …
    corecore